Photoproduction of W bosons as a test of the standard model

1991 ◽  
Vol 69 (1) ◽  
pp. 52-56
Author(s):  
Mark A. Samuel ◽  
C. Kalman ◽  
M. Frank ◽  
C. Hamzaoui ◽  
Guowen Li

The photoproduction of W bosons is proposed as a means of testing the standard model. In particular, the radiation amplitude zero, which may occur in this process, provides a sensitive measure of the magnetic moment of the W bosons. Such experiments, using colliding beams, are feasible with present-day accelerators.

2018 ◽  
Vol 10 (6) ◽  
pp. 24 ◽  
Author(s):  
Andrew Worsley ◽  
J.F. Peters

The electron magnetic moment anomaly is conventionally derived from the fine structure constant using a complex formula requiring over 13,000 evaluations. However, the charge of the electron is an important parameter of the Standard Model and could provide an enhanced basis for the derivation of the electron magnetic moment anomaly. This paper uses a geometric model to reformulate the equation for the electron’s charge, this is then used to determine a more accurate value for the electron magnetic moment anomaly from first geometric principles. This enhanced derivation uses a single evaluation, using a concise mathematical equation based on the natural log e^pi. This geometric model will lead to further work to theoretically improve the understanding of the electron.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Saunak Dutta ◽  
Anirban Karan

AbstractThough various extensions of the Standard Model with higher gauge group predict the existence of leptoquarks, none of them has been observed yet at any of the colliders. In this paper, we study the prospect of several past and future $$e$$ e -$$p$$ p colliders like HERA, LHeC and FCC-he to detect them through radiation amplitude zero. We find that the leptoquarks showing zeros in the tree-level single-photon amplitudes at $$e$$ e -$$p$$ p collider lie within the complementary set of those exhibiting zeros at e-$$\gamma $$ γ collider. We present a PYTHIA-based analysis for HERA, LHeC and FCC-he (run II) to detect the leptoquarks with masses 70 GeV, 900 GeV and 1.5 TeV (2.0 TeV) respectively through radiation amplitude zero.


2018 ◽  
Vol 179 ◽  
pp. 01015 ◽  
Author(s):  
Dario Müller

While the LHC has not directly observed any new particle so far, experimental results from LHCb, BELLE and BABAR point towards the violation of lepton flavour universality in b ⟶ sℓ+ and b ⟶ c-ℓν. In this context, also the discrepancy in the anomalous magnetic moment of the muon can be interpreted as a sign of lepton flavour universality violation. Here we discuss how these hints for new physics can also be explained by introducing leptoquarks as an extension of the Standard Model. Indeed, leptoquarks are good candidates to explain the anomaly in the anomalous magnetic moment of the muon because of an mg/mμ enhanced contribution giving correlated effects in Z boson decays which is particularly interesting in the light of future precision experiments.


2003 ◽  
Vol 18 (16) ◽  
pp. 2769-2778
Author(s):  
Graham D. Kribs

I explain the theoretical connection between lepton flavor violation and muon g - 2 in supersymmetry1. Given any central value deviation of muon g - 2 from the standard model that is assumed to be due to weak scale supersymmetry, I show that stringent bounds on lepton flavor violating scalar masses can be extracted. These bounds are essentially independent of supersymmetric parameter space. I then briefly compare this indirect handle on supersymmetric lepton flavor violation with direct observation at a future lepton collider operating in the e- e- mode. This is a summary of a talk given at e- e-01: 4th International Workshop on Electron-Electron Interactions at TeV Energies.


2020 ◽  
Vol 887 ◽  
pp. 1-166 ◽  
Author(s):  
T. Aoyama ◽  
N. Asmussen ◽  
M. Benayoun ◽  
J. Bijnens ◽  
T. Blum ◽  
...  

2014 ◽  
Vol 07 ◽  
pp. 1-8 ◽  
Author(s):  
Burton Richter

The success of the first few years of LHC operations at CERN, and the expectation of more to come as the LHC's performance improves, are already leading to discussions of what should be next for both proton–proton and electron–positron colliders. In this discussion I see too much theoretical desperation caused by the so-far-unsuccessful hunt for what is beyond the Standard Model, and too little of the necessary interaction of the accelerator, experimenter, and theory communities necessary for a scientific and engineering success. Here, I give my impressions of the problem, its possible solution, and what is needed to have both a scientifically productive and financially viable future.


2018 ◽  
Vol 179 ◽  
pp. 01004 ◽  
Author(s):  
Tim Gorringe

The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.


2018 ◽  
Vol 179 ◽  
pp. 01008 ◽  
Author(s):  
Marc Knecht

Progress made on the theoretical aspects of the standard model contributions to the anomalous magnetic moment of the charged leptons since the first FCCP Workshop on Capri in 2015 is reviewed. Emphasis is in particular given to the various cross-checks that have already become available, or might become available in the future, for several important contributions.


1986 ◽  
Vol 01 (08) ◽  
pp. 465-474 ◽  
Author(s):  
EMIDIO GABRIELLI

The calculations of production cross sections of W’ s and Z0’ s in e-p reactions at HERA energies and beyond are revised, improved and updated. Comparison with previous calculations show that in some cases the cross sections were considerably overestimated. The effects of a possible deviation of the W anomalous magnetic moment from the standard model value are also discussed.


Sign in / Sign up

Export Citation Format

Share Document