radiation amplitude
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Massimiliano Maria Riva ◽  
Filippo Vernizzi

Abstract We compute the four-momentum radiated during the scattering of two spinless bodies, at leading order in the Newton’s contant G and at all orders in the velocities, using the Effective Field Theory worldline approach. Following [1], we derive the conserved stress-energy tensor linearly coupled to gravity generated by localized sources, at leading and next-to-leading order in G, and from that the classical probability amplitude of graviton emission. The total emitted momentum is obtained by phase-space integration of the graviton momentum weighted by the modulo squared of the radiation amplitude. We recast this as a two-loop integral that we solve using techniques borrowed from particle physics, such as reverse unitarity, reduction to master integrals by integration-by-parts identities and canonical differential equations. The emitted momentum agrees with recent results obtained by other methods. Our approach provides an alternative way of directly computing radiated observables in the post-Minkowskian expansion without going through the classical limit of scattering amplitudes.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 206
Author(s):  
Pavel Spirin

We consider the scalar bremsstrahlung of the spinless relativistic particle, which interacts with infinitely thin cosmic string by linearized gravity. With the iterational scheme, based on the Perturbaion Theory with respect to the Newtonian constant, we compute the radiation amplitude and the emitted energy due to collision. The general phenomenon of mutual cancellation of the leading terms on the local and non-local amplitude, known in the ultrarelativistic regime for several types of collision, also takes place here. Remarkably, this cancellation (destructive interference) is complete, and takes place for any particle’s velocity. We compute the spectral and angular distributions of the emitted waves. Particular attention is paid to the ultrarelativistic case. Due to the radiation emission, a string may lose its energy and decrease the tension; it may affect all field effects, including the vacuum polarization and the Casimir effect, in terms of physical problems with the real cosmic strings.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Saunak Dutta ◽  
Anirban Karan

AbstractThough various extensions of the Standard Model with higher gauge group predict the existence of leptoquarks, none of them has been observed yet at any of the colliders. In this paper, we study the prospect of several past and future $$e$$ e -$$p$$ p colliders like HERA, LHeC and FCC-he to detect them through radiation amplitude zero. We find that the leptoquarks showing zeros in the tree-level single-photon amplitudes at $$e$$ e -$$p$$ p collider lie within the complementary set of those exhibiting zeros at e-$$\gamma $$ γ collider. We present a PYTHIA-based analysis for HERA, LHeC and FCC-he (run II) to detect the leptoquarks with masses 70 GeV, 900 GeV and 1.5 TeV (2.0 TeV) respectively through radiation amplitude zero.


2019 ◽  
Vol 14 (2) ◽  
pp. 86-102
Author(s):  
S. A. Kuznetsov ◽  
N. A. Nikolaev ◽  
S. A. Trashkeev ◽  
P. A. Lazorskiy ◽  
A. V. Arzhannikov

A consideration of ultra-thin resonant absorbers of electromagnetic radiation utilizing high-impedance metasurfaces is carried out in terms of an equivalent circuit theory. By incorporating a thin layer of tunable dielectric into such structures it is feasible to manipulate the radiation amplitude and phase under the condition of a small thickness of the dielectric layer in comparison with the radiation wavelength. As such a dielectric, the nematic liquid crystal 5CB with a thickness of 80 um was chosen, and a 5CB-based prototype of an absorbing metastructure of the reflective type optimized for operation in the vicinity of a frequency of 140 GHz was fabricated and experimentally studied. Testing the structure revealed good agreement between the calculated and experimental reflection spectra. The results of this work can be useful for modeling and developing quasi-optical and integrated active devices of terahertz photonics.


2016 ◽  
Vol 25 (03n04) ◽  
pp. 1640017 ◽  
Author(s):  
W. Knap ◽  
D. B. But ◽  
D. Couquillat ◽  
N. Dyakonova ◽  
M. Sypek ◽  
...  

An overview of main results concerning THz detection related to plasma nonlinearities in nanometer field effect transistors is presented. In particular the physical limits of the responsivity, speed and the dynamic range of these detectors are discussed. As a conclusion, we will present applications of the FET THz detectors for construction of focal plane arrays. These arrays, together with in purpose developed diffractive 3D printed optics lead to construction of the demonstrators of the fast postal security imagers and nondestructive industrial quality control systems. We will show also first results of FET based imaging that uses for contrast not only usual THz radiation amplitude, but also the degree of its circular polarization. Sub-THz high resolution gas spectroscopy is shown to be a powerful means to diagnose various diseases via exhaled breath analysis.


2015 ◽  
Vol 81 (3) ◽  
Author(s):  
F. Bazouband ◽  
B. Maraghechi

Simulation of free electron laser (FEL) with modified wiggler consisting of a conventional planar wiggler with third harmonic field component is presented. A set of self consistent nonlinear differential equations is derived and solved numerically by Runge–Kutta method. The optimum amplitudes of fundamental and third harmonic wiggler filed are obtained to increase the third harmonic radiation in comparison with conventional wiggler and also to have lower electron beam energy compared to conventional wiggler with the same wavelength. For the thermal effect the axial energy spread of electron beam, without any spread in the transverse velocity, is assumed. A peculiar region is found in which there is a sharp increase of the radiation amplitude. Thermal effect of the electron beam was found to be irregular in this peculiar region.


2014 ◽  
Vol 621 ◽  
pp. 3-6
Author(s):  
Jin Wu Wu ◽  
Hai Peng Yuan

In this paper, the acoustic radiation mode’s amplitudes of laminated composite plates are studied. The layer wise finite element model is imposed to determine velocity distributions of laminated composite plates. Based on the acoustic radiation mode, the effects of the panel orientation angle on the first three orders acoustic radiation mode’s amplitude of the laminated composite plates are then discussed. A twelve-layer laminated plate was used as an example, and the numerical simulations results show that the effects of the panel orientation angle on the acoustic radiation amplitude of the laminated composite plates are significant.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Andrej Gosar

Two moderate magnitude (Mw = 5.6 and 5.2) earthquakes in Krn Mountains occurred in 1998 and 2004 which had maximum intensity VII-VIII and VI-VII EMS-98, respectively. Comparison of both macroseismic fields showed unexpected differences in the epicentral area which cannot be explained by site effects. Considerably, different distribution of the highest intensities can be noticed with respect to the strike of the seismogenic fault and in some localities even higher intensities have been estimated for the smaller earthquake. Although hypocentres of both earthquakes were only 2 km apart and were located on the same seismogenic Ravne fault, their focal mechanisms showed a slight difference: almost pure dextral strike-slip for the first event and a strike-slip with small reverse component on a steep fault plane for the second one. Seismotectonically the difference is explained as an active growth of the Ravne fault at its NW end. The radiation patterns of both events were studied to explain their possible impact on the observed variations in macroseismic fields and damage distribution. Radiation amplitude lobes were computed for three orthogonal directions: radial P, SV, and SH. The highest intensities of both earthquakes were systematically observed in directions of four (1998) or two (2004) large amplitude lobes in SH component (which corresponds mainly to Love waves), which have significantly different orientation for both events. On the other hand, radial P direction, which is almost purely symmetrical for the strike-slip mechanism of 1998 event, showed for the 2004 event that its small reverse component of movement has resulted in a very pronounced amplitude lobe in SW direction where two settlements are located which expressed higher intensities in the case of the 2004 event with respect to the 1998 one. Although both macroseismic fields are very complex due to influences of multiple earthquakes, retrofitting activity after 1998, site effects, and sparse distribution of settlements, unusual differences in observed intensities can be explained with different radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document