Modelling of circular wave guides

1992 ◽  
Vol 70 (10-11) ◽  
pp. 1092-1098 ◽  
Author(s):  
A. Delage ◽  
K. A. McGreer ◽  
E. Rainville

In many circumstances the design of interconnects in a photonic integrated circuit can be simplified by using low loss curved wave guides in the shapes of circular arcs. Radiative losses associated with the curvature have been computed as a function of the radius of curvature. The technique takes advantage of the effective index method to reduce the problem from two dimensions to one dimension (1D) and uses a change of coordinate that transforms an arc of circle into a straight line. This transformation results in a monotonous increase of the refractive index as function of r (the distance from the centre of the circle) for original constant index regions. The new system is solved by discretizing this varying effective index onto many small layers of constant index over a window large enough to contain the region where the field is not negligible. A multilayer algorithm in 1D is then used to find complex propagation constants in which the imaginary part is related to the fundamental energy loss owing to the curvature. The solution also gives the shape of the field necessary to match the mode profiles at the junction between the straight and curved part of the wave guide. The basic change of variable has been extended to the finite difference solution of the scalar wave equation and to the beam propagation method.

Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Da Teng ◽  
Kai Wang

The waveguiding of terahertz surface plasmons by a GaAs strip-loaded graphene waveguide is investigated based on the effective-index method and the finite element method. Modal properties of the effective mode index, modal loss, and cut-off characteristics of higher order modes are investigated. By modulating the Fermi level, the modal properties of the fundamental mode could be adjusted. The accuracy of the effective-index method is verified by a comparison between the analytical results and numerical simulations. Besides the modal properties, the crosstalk between the adjacent waveguides, which determines the device integration density, is studied. The findings show that the effective-index method is highly valid for analyzing dielectric-loaded graphene plasmon waveguides in the terahertz region and may have potential applications in subwavelength tunable integrated photonic devices.


Author(s):  
Sarvagya Dwivedi ◽  
Jon Kjellman ◽  
Tangla David ◽  
Mathias Prost ◽  
Olga Syshchyk ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Author(s):  
Paul Verrinder ◽  
Lei Wang ◽  
Joseph Fridlander ◽  
Fengqiao Sang ◽  
Victoria Rosborough ◽  
...  

1998 ◽  
Vol 120 (3) ◽  
pp. 441-447 ◽  
Author(s):  
K. Kawasaki ◽  
H. Tamura

In this paper, a duplex spread blade method for cutting hypoid gears with modified tooth surface is proposed. The duplex spread blade method provides a rapid and economical manufacturing method because both the ring gear and pinion are cut by a spread blade method. In the proposed method, the nongenerated ring gear is manufactured with cutting edge that is altered from the usual straight line to a circular arc with a large radius of curvature and the circular arc cutting edge produces a modified tooth surface. The pinion is generated by a cutter with straight cutting edges as usual. The main procedure of this method is the determination of the cutter specifications and machine settings. The proposed method was validated by gear manufacture.


Sign in / Sign up

Export Citation Format

Share Document