Multiple ionization of argon by positron impact

1996 ◽  
Vol 74 (7-8) ◽  
pp. 373-375 ◽  
Author(s):  
R. Hippler ◽  
S. Helms ◽  
U. Brinkmann ◽  
J. Deiwiks ◽  
H. Schneider ◽  
...  

Recent experimental results for the multiple ionization of argon by positron impact have been reanalysed. Absolute cross sections for the double and triple ionization of argon were obtained from measured ratios of double-to-single and triple-to-single ionization, using known cross sections for single ionization and for positronium formation. Distinct differences compared to similar results for electron impact are noted.

1978 ◽  
Vol 33 (9) ◽  
pp. 1111-1113 ◽  
Author(s):  
F. Egger ◽  
T. D. Mark

Electron impact ionization of He, Ne, Ar, Kr and Xe has been studied with a double focussing mass spectrometer Varian MAT CH5. Ratios of various multiple ionization cross sections with respect to single ionization cross sections for He, Ne, Ar, Kr and Xe at electron energies of 50, 100 and 150eV are given. These cross section ratios are com­pared with previous determinations.


2014 ◽  
Vol 998-999 ◽  
pp. 140-143
Author(s):  
Yan Hua Li

Using the empirical formula with three free parameters recently proposed, ionization cross sections are given for the representation of cross sections for single ionization of free atoms from the ground stages by electron impact. Almost all experimental results can be approximated by this formula with 20% over the whole energy range between the threshold and 1 . All experimental results can be approximated with experimental error. The formula proposed is not suitable to regenerate the exact contour of fine structure in the ionization cross section curve. The probable error is estimated to be approximately 20%, but the error is larger than 40% and no fine structures are accounted for near the threshold.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 31
Author(s):  
Ghanshyam Purohit

We report triple differential cross-sections (TDCSs) for the electron impact single ionization of tungsten atoms for the ionization taking place from the outer sub shells of tungsten atoms, viz. W (6s), W (5d), W (5p) and W (4f). The study of the electron-induced processes such as ionization, excitation, autoionization from tungsten and its charged states is strongly required to diagnose and model the fusion plasma in magnetic devices such as Tokamaks. Particularly, the cross-section data are important to understand the electron spectroscopy involved in the fusion plasma. In the present study, we report TDCS results for the ionization of W atoms at 200, 500 and 1000 eV projectile energy at different values of scattered electron angles. It was observed that the trends of TDCSs for W (5d) are significantly different from the trends of TDCSs for W (6s), W (5p) and W (4f). It was further observed that the TDCS for W atoms has sensitive dependence on value of momentum transfer and projectile energy.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
R.I. Campeanu ◽  
Colm T. Whelan

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will be presented. The kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci), and interference effects.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 60 ◽  
Author(s):  
Yogesh Kumar ◽  
Manoj Kumar ◽  
Sachin Kumar ◽  
Rajeev Kumar

In the present investigation, the plane-wave Born approximation was employed to calculate the total ionization cross sections by electron impact of methanol, ethanol and 1-propanol from the threshold of ionization to 10 MeV. This method requires continuum generalized oscillator strengths (CGOSs). The two different semi-phenomenological expressions of CGOS, given by Mayol and Salvat and Weizsacker and Williams, along with approximated form of the continuum optical oscillator strength (COOS) by Khare et al. were used. Furthermore, the average of the above two CGOSs was also used. The calculated ionization cross sections were compared to the available previous theoretical results and experimental data. Out of three CGOSs, the present results with the average CGOS were found in good agreement with the available experimental results for all the considered molecules. Collision parameters CRP were also calculated from 0.1 to 100 MeV and the calculations were found to be in excellent agreement with the experimental results of Reike and Prepejchal.


Sign in / Sign up

Export Citation Format

Share Document