Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach

2004 ◽  
Vol 41 (6) ◽  
pp. 1026-1037 ◽  
Author(s):  
R CK Wong ◽  
L R Bentley ◽  
A W Ndegwa ◽  
A Chu ◽  
M Gharibi ◽  
...  

Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that MEA was successfully biodegraded or transformed into simple compounds under aerobic and anaerobic conditions. The electrical conductivity (EC) of the soil evolved with changing chemical conditions of its by-products during degradation of MEA. Based on experimental observations, five ranges of EC were correlated with five geochemical zones consisting of various concentrations of MEA and its by-products. The five ranges of EC were translated into equivalent in situ EC ranges. Using these in situ EC ranges, an electrical resistivity tomography image was used to create a geochemical interpretation of the subsurface beneath the plant site. The geochemical interpretation can provide useful information for detailed site assessment and remediation design.Key words: electrical conductivity, biodegradation, monoethanolamine, ammonia, acetate, electrical resistivity tomography, site characterization, observational approach.

2019 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but it is strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease in the zone of interest. The objective of this study is to evaluate the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After two years of monitoring, we observe variability of SWI at different time scales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-trivial salinity profiles in open boreholes (step-wise profiles really reflect the presence of fresh water at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2020 ◽  
Vol 24 (4) ◽  
pp. 2121-2139 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but its imaging capabilities are strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease at the depths of interest. The objective of this study is to test the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After 2 years of monitoring, we observe variability of SWI at different timescales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-monotonic salinity profiles in open boreholes (step-wise profiles really reflect the presence of freshwater at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2001 ◽  
Author(s):  
Xianjin Yang ◽  
Douglas J. LaBrecque ◽  
Illa Amerson‐Treat ◽  
Richard L. Johnson ◽  
Paul Lundegard ◽  
...  

2004 ◽  
Vol 8 (1) ◽  
pp. 8-22 ◽  
Author(s):  
V. Naudet ◽  
A. Revil ◽  
E. Rizzo ◽  
J.-Y. Bottero ◽  
P. Bégassat

Abstract. Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP) and electrical resistivity tomography (ERT) have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution) and redox conditions ("electro-redox" contribution). Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85) is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91) is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume


2007 ◽  
Vol 40 (4) ◽  
pp. 2060
Author(s):  
G. Vargemezis ◽  
P. Tsourlos ◽  
C. Papazachos ◽  
D. Kostopoulos

Electrical resistivity tomography has been applied for the exploration of a karstic cave system at the region of Ermakia, next to the city of Ptolemais (NWt Greece). Geological investigations indicated that the main known Ermakia cave chamber "communicates " with at least one underground karstic ovoid. This evidence lead us to prospect the surrounding area by applying 2-D Electrical tomography survey on a regular grid in both x,y directions. Survey lines crossed the known cave in order to verify k the suitability of the method at the specific area and calibrate the resistivity values. Resistivity data were inverted and results were compiled in qusi3-D resistivity images. The interpreted results indicated the existence of two more chambers next to the known one which is in agreement with in-situ observations.


2013 ◽  
Vol 13 (1) ◽  
pp. vzj2013.04.0074 ◽  
Author(s):  
Christina Ganz ◽  
Jörg Bachmann ◽  
Ursula Noell ◽  
Wilhelmus H.M. Duijnisveld ◽  
Axel Lamparter

2001 ◽  
Author(s):  
Xianjin Yang ◽  
Douglas J. LaBrecque ◽  
Illa Amerson-Treat ◽  
Richard L. Johnson ◽  
Paul Lundegard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document