Shear strength of remolded soils at consistency limits

2010 ◽  
Vol 47 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Kamil Kayabali ◽  
Osman Oguz Tufenkci

The undrained shear strength of remolded soils is of concern in certain geotechnical engineering applications. Several methods for determining this parameter exist, including the laboratory vane test. This study proposes a new method to estimate the undrained shear strength, particularly at the plastic and liquid limits. For 30 inorganic soil samples of different plasticity levels, we determined the Atterberg limits, then performed a series of reverse extrusion tests at different water contents. The plastic and liquid limits are derived from the linear relationship between the logarithm of the extrusion pressure and water content. The tests show that the average undrained shear strength determined from the extrusion pressures at the plastic limit is about 180 kPa, whereas the average undrained shear strength at the liquid limit is 2.3 kPa. We show that the undrained shear strength of remolded soils at any water content can be estimated from the Atterberg limits alone. Although the laboratory vane test provides a reasonable undrained shear strength value at the plastic limit, it overestimates the undrained shear strength at the liquid limit and thus, care must be taken when the laboratory vane test is used to determine undrained shear strengths at water contents near the liquid limit.

Clay Minerals ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Giovanni Spagnoli ◽  
Martin Feinendegen

AbstractThe detection of the plastic limit of clays is subject to human error. Several attempts have been made to correlate across studies the geotechnical properties of fine-grained soils (water content, liquidity index, shear strength, etc.). Based on the premise that the liquidity index and water content ratio can be correlated directly, an alternative method to obtain indirectly the plastic limit is suggested here. The present study investigated 40 natural clayey samples of various mineralogies and origins and other publicly available data, where Atterberg limits and undrained shear strength values obtained with the vane shear tests were given. The liquidity index and water-content ratio correlate very well for defined undrained shear strength values of the clays. Solving the liquidity index equation for the plastic limit, estimated plastic limit values obtained by the liquidity index/water-content ratio relationship were compared with laboratory plastic-limit values. Preliminary results based on 62 values show an exponential trend with a multiple regression coefficient of 0.79. The data need to be confirmed on a larger database, however.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tran Thi Thanh Thuy ◽  
Doni Prakasa Eka Putra ◽  
Wawan Budianta ◽  
Hemanta Hazarika

The roadway in Karangjati, Ngawi Regency, East Java, Indonesia, which is underlain by expansive soil, is susceptible to damage due to volume change. This research aims to improve the engineering properties, such as consistency limits, compressibility, and undrained shear strength of the montmorillonite dominated soil in this area using an electrokinetic stabilization method. Four electro-kinetic experiments were conducted using different electrolytes (calcium chloride or pure water) under different conditions (no-flow or flow water). The results show that, pH values of all soil samples decreased at anolyte and increased at catholyte. Atterberg limits of the soil samples were found to increase, where the liquid limit (LL) range of 79.72– 86.14%, plastic limit (PL) 25.22–30.80%, and plasticity index (PI) 53.28–60.92, liquidity Index (LI) 0.91–1.08. The compression index Cc was 0.50– 0.742. Undrained shear strength of treated soil range of 7–11 kPa. Moreover, strengthening degree of the treated soils achieve 304–556%. The soil improvement was achieved by decreasing the Atterberg limits, and compressibility and increasing the undrained shear strength. Applying calcium chloride and flow water condition were the most effective methods for the soil improvement. The mineralogical compositions of the soil samples did not change after the treatment. Keywords: Electro-kinetic stabilization, electro chemical injection, clayey soil improvement.


2014 ◽  
Vol 51 (9) ◽  
pp. 1073-1086 ◽  
Author(s):  
P.J. Vardanega ◽  
S.K. Haigh

A database of 641 fall cone tests on 101 soil samples from 12 countries has been analysed to determine the best mathematical relationship linking undrained shear strength with liquidity index. From the database, it is shown that the use of a linear relationship linking liquidity index and the logarithm of undrained shear strength that uses the commonly assumed 100-fold factor increase in strength from the liquid to plastic limit overpredicts the measured data of soil strength. The use of a factor of about 35 for the ratio between the strength at liquid limit and that extrapolated to the plastic limit is shown to be more realistic. Logarithmic liquidity index is examined and found to also correlate strongly with the logarithm of undrained shear strength; however, it is shown that no great statistical improvement is present compared with the semi-logarithmic formulation. When considering data of individual soils a power law fitting is statistically shown to be the preferred mathematical function.


2016 ◽  
Vol 53 (10) ◽  
pp. 1628-1645 ◽  
Author(s):  
Marco D’Ignazio ◽  
Kok-Kwang Phoon ◽  
Siew Ann Tan ◽  
Tim Tapani Länsivaara

The study focuses on the derivation of transformation models for undrained shear strength (su) of Finnish soft sensitive clays. Specific correlation equations for su of Finnish clays are presented in this work for the first time. Field and laboratory measurements from 24 test sites in Finland are exploited for this purpose and a multivariate database is constructed. The multivariate data consist of su from the field vane test, preconsolidation stress, vertical effective stress, liquid limit, plastic limit, natural water content, and sensitivity. The main objective is to evaluate the interdependence of su, consolidation stresses, and index parameters and provide a consistent framework for practical use. The new correlations are established through regression analyses. The constructed framework is further validated by another independent multivariate database of clays from Sweden and Norway as well as by empirical equations for Swedish and Norwegian clays. Existing correlations are evaluated for Finnish and Scandinavian clays. Finally, bias and uncertainties of the new correlations are presented.


1986 ◽  
Vol 23 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Y. Wasti ◽  
M. H. Bezirci

The liquid and plastic limits for a variety of natural and artificial soils covering a wide range of plasticity, as determined by the Casagrande method and the fall cone test and based on a strength criterion, were compared. To check the validity of the strength criterion, the undrained shear strength of these soils has been determined with a laboratory vane over the water content range between these limits. A limited comparison of the undrained strength values obtained from the vane test and fall cone test is also given. Key words: Atterberg limits, consistency, fall cone, laboratory vane, shear strength.


Sign in / Sign up

Export Citation Format

Share Document