Relationships between undrained shear strength, liquidity index, and water content ratio of clays

2020 ◽  
Vol 79 (9) ◽  
pp. 4817-4828 ◽  
Author(s):  
Satoru Shimobe ◽  
Giovanni Spagnoli
Clay Minerals ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Giovanni Spagnoli ◽  
Martin Feinendegen

AbstractThe detection of the plastic limit of clays is subject to human error. Several attempts have been made to correlate across studies the geotechnical properties of fine-grained soils (water content, liquidity index, shear strength, etc.). Based on the premise that the liquidity index and water content ratio can be correlated directly, an alternative method to obtain indirectly the plastic limit is suggested here. The present study investigated 40 natural clayey samples of various mineralogies and origins and other publicly available data, where Atterberg limits and undrained shear strength values obtained with the vane shear tests were given. The liquidity index and water-content ratio correlate very well for defined undrained shear strength values of the clays. Solving the liquidity index equation for the plastic limit, estimated plastic limit values obtained by the liquidity index/water-content ratio relationship were compared with laboratory plastic-limit values. Preliminary results based on 62 values show an exponential trend with a multiple regression coefficient of 0.79. The data need to be confirmed on a larger database, however.


1986 ◽  
Vol 23 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Y. Wasti ◽  
M. H. Bezirci

The liquid and plastic limits for a variety of natural and artificial soils covering a wide range of plasticity, as determined by the Casagrande method and the fall cone test and based on a strength criterion, were compared. To check the validity of the strength criterion, the undrained shear strength of these soils has been determined with a laboratory vane over the water content range between these limits. A limited comparison of the undrained strength values obtained from the vane test and fall cone test is also given. Key words: Atterberg limits, consistency, fall cone, laboratory vane, shear strength.


2014 ◽  
Vol 803 ◽  
pp. 255-264
Author(s):  
Khairul Nizar Mohd Yusof ◽  
Fauziah Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Muhammad Faheem Mohd Tahir

Clay soil is one of the problematic soils due to its natural states which have low bearing capacity and high compressibility. The effect and problem of the clay soil characteristic creates a problem for construction especially excessive settlement and this can lead to unstable and potential cracks of engineering structures. At presents, there are few of soil improvement types can be carried out to overcome these problems, and electro osmotic consolidation is one of the options. This method has been applied many years ago especially in european countries. The study encompasses the determination of water content, atterberg’s limits and undrained shear strength after electro osmotic consolidation treatment of clay soils taken from 0.5 m and 1.5 m at southwest part of johor. All the samples were tested according to BS1377:1990. An experimental study was implemented in a pvc cylinder tube having dimensions of 300 mm height and 100 mm diameter. In the results of electro osmotic consolidation tests by installing copper spring electrodes, the measured undrained shear strength was increased considerably at the anodes especially compared to the initial undrained shear strength due to electro osmosis process and consolidation. As laboratory studies of its measurement have shown, the application of electro osmotic consolidation after the application of a direct current applied voltage of 10 volts, at the anodes especially: (i) a decrease by approximately 35% in water content; (ii) an increase around 29% in undrained shear strength; and (iii) a decrease about 21% in index plasticity. The results obtained in this study shows that the electro osmotic enhanced 15 kpa vertical loading consolidation is a feasible approach in strengthening of south west soft clay in johor. It can be clearly suggested that the higher the voltage applied in the system, the higher readings of undrained shear strength and the lower of water content especially at the anodes.


2017 ◽  
Vol 35 (4) ◽  
pp. 1577-1586 ◽  
Author(s):  
Beshy Kuriakose ◽  
Benny Mathews Abraham ◽  
A. Sridharan ◽  
Babu T. Jose

2010 ◽  
Vol 47 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Kamil Kayabali ◽  
Osman Oguz Tufenkci

The undrained shear strength of remolded soils is of concern in certain geotechnical engineering applications. Several methods for determining this parameter exist, including the laboratory vane test. This study proposes a new method to estimate the undrained shear strength, particularly at the plastic and liquid limits. For 30 inorganic soil samples of different plasticity levels, we determined the Atterberg limits, then performed a series of reverse extrusion tests at different water contents. The plastic and liquid limits are derived from the linear relationship between the logarithm of the extrusion pressure and water content. The tests show that the average undrained shear strength determined from the extrusion pressures at the plastic limit is about 180 kPa, whereas the average undrained shear strength at the liquid limit is 2.3 kPa. We show that the undrained shear strength of remolded soils at any water content can be estimated from the Atterberg limits alone. Although the laboratory vane test provides a reasonable undrained shear strength value at the plastic limit, it overestimates the undrained shear strength at the liquid limit and thus, care must be taken when the laboratory vane test is used to determine undrained shear strengths at water contents near the liquid limit.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Daniel Tjandra ◽  
Indarto Indarto ◽  
Ria Asih Aryani Soemitro

Clayey soils had a seasonal water content change, which occurred in the zone known as active zone. This change happen due to the seasonal drying and wetting cycles, which affects the fluctuation of water table. The water content variation causes the change in undrained shear strength and these changes have an impact to the friction capacity and adhesion factor of pile foundation. This paper discusses the undrained shear strength, friction capacity of pile and adhesion factor of piles under drying and wetting cycles. Research was conducted on two different types of clayey soils. Laboratory experiments for varying soil water content were done. Soil samples were placed in a cylinder tube, the concrete pile model was then inserted into the soil. The diameter of the tube was about 15 times of the pile diameter. Loading test was carried out to investigate pile friction capacity. The result of this study showed that there was great effect of seasonal water content change on undrained shear strength, friction capacity and also adhesion factor of pile in the clayey soils.


Sign in / Sign up

Export Citation Format

Share Document