Repeated compressive loading of Leda clay

1979 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
G. P. Raymond ◽  
P. N. Gaskin ◽  
F. Y. Addo-Abedi

Repeated load drained tests on Leda clay, as related to subgrade performance, are reported. A threshold stress divided the performance into failing and stable specimens. For the stable specimens the resilient modulus attained equilibrium at about 105 cycles but varied with stress level. Permanent strains continued even at low stresses.

1979 ◽  
Vol 16 (4) ◽  
pp. 798-802 ◽  
Author(s):  
P. N. Gaskin ◽  
G. P. Raymond ◽  
F. Y. Addo-Abedi ◽  
J. S. Lau

Twelve repeated load drained triaxial tests to at least 105 cycles on a sand are reported. A threshold stress of about 50% of the static failure strength was found. Below the threshold stress, the permanent deformation and resilient modulus reached constant values. Above the threshold stress, the permanent deformation began to increase rapidly and the resilient modulus to decrease as the number of stress cycles increased. The importance of keeping the traffic stress in the pavement below the threshold stress is outlined.


Author(s):  
Navneet Garg ◽  
Marshall R. Thompson

Six granular materials were used as base and subbase materials in the flexible pavement test sections for the Minnesota Road Research (Mn/ROAD) project. Crushed/fractured particles are not allowed in aggregate classes CL-1Fsp, CL-1Csp, CL-3sp, and CL-4sp. Ten to 15 percent crushed/fractured particles are required for CL-5sp. One hundred percent crushed/ fractured particles are required for CL-6sp. A comprehensive laboratory testing program was established to determine pertinent engineering properties of the granular materials. Rapid shear tests and repeated-load tests were conducted to determine the shear strength parameters (friction angle and cohesion), resilient modulus, rutting potential, stress history effects on shear strength, and moisture susceptibility. The results from the rapid shear tests and permanent deformation tests show that the rutting potential of a granular material can be characterized from rapid shear test at a confining pressure of 15 psi (103.35 kPa). The rutting parameter A was a function of the shear strength of the granular materials. The shear strength results obtained from rapid shear tests performed at a confining pressure of 15 psi reflect the rutting trends observed in the low-volume road test sections at the Mn/ROAD project. Results from repeated-load tests were used to develop the parameters for K-θ, UT-Austin, and Uzan’s models for evaluating the resilient modulus of granular materials. The axial strain values calculated from the resilient modulus models appear to be in good agreement with the measured axial strain values, except for the very low shear strength material CL-1Csp.


2000 ◽  
Vol 1723 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Rajesh K. Bhairampally ◽  
Robert L. Lytton ◽  
Dallas N. Little

Repeated-load permanent deformation testing has long been a popular way to characterize the performance of asphalt mixtures and to account for damage that leads to rutting. A number of empirical models have been used to fit repeated-load permanent deformation data. One such model, developed by Tseng and Lytton in 1989, fits permanent deformation data of most asphalt mixtures well. However, some mixtures exhibit a rate of damage that is in excess of that predicted by the 1989 Tseng and Lytton model. A numerical adaptation of the Tseng and Lytton empirical model is presented that readily characterizes such damage-susceptible mixtures. The excessive rate of damage is explained and reconciled in terms of plastic work theory and dissipated strain energy. The numerical approach is used to demonstrate the corrective effects of two types of additives to the mixtures: a recycled coproduct and hydrated lime.


Author(s):  
Mingu Kang ◽  
Joon Han Kim ◽  
Issam I. A. Qamhia ◽  
Erol Tutumluer ◽  
Mark H. Wayne

This paper describes the use of the bender element (BE) shear wave measurement technology for quantifying the effectiveness of geogrid stabilization of unbound aggregate materials with improved mechanical properties from repeated load triaxial testing. Crushed stone aggregate specimens were prepared with three different gradations, that is, upper bound (UB), mid-range engineered (ENG), and lower bound, according to the dense graded base course gradation specification in Illinois. The specimens were compacted at modified Proctor maximum dry densities and optimum moisture contents. Two geogrids with different triaxial aperture sizes were placed at specimen mid-height, and unstabilized specimens with no geogrid were also prepared for comparison. To measure shear wave velocity, three BE pairs were placed at different heights above geogrid. Repeated load triaxial tests were conducted following the AASHTO T307 standard resilient modulus test procedure, while shear wave velocity was measured from the installed BE pairs. After initial specimen conditioning, and at low, intermediate, and high applied stress states, both the resilient moduli and accumulated permanent strains were determined to relate to the geogrid local stiffening effects in the specimens quantified by the measured shear wave velocities. The resilient modulus and shear wave velocity trends exhibited a directly proportional relationship, whereas permanent strain and shear wave velocity values were inversely related. The enhancement ratios calculated for the geogrid stabilized over the unstabilized specimens showed significant improvements in mechanical behavior for the UB and ENG gradations, and a maximum enhancement was achieved for the engineered gradation specimens stabilized with the smaller aperture geogrid.


Author(s):  
Anand J. Puppala ◽  
Aravinda M. Ramakrishna ◽  
Laureano R. Hoyos

Three chemical stabilization methods—sulfate resistant cement (Type V), low-calcium fly-ash (Class F) mixed with sulfate resistant cement (Type V), and ground granulated blast furnace slag—were used in a series of repeated load triaxial tests on clayey soil to assess the effectiveness of these three stabilizers in enhancing resilient modulus ( MR) properties of the soil. MR results were measured from repeated load triaxial tests conducted on both control and treated soils at optimum moisture content levels. Test results were analyzed to understand the potentials of each stabilizer on MR response of the soils and to study the effects of confining and deviatoric stresses on resilient response of the treated soils. Mechanisms for MR enhancements in treated soils were developed, and a series of flexible pavement design exercises was conducted to evaluate the impact of each stabilizer on the design thickness of the asphalt surface layer of pavements.


Author(s):  
Michael Martin

Zirconium alloys, as used in water-cooled nuclear reactors, are susceptible to a time-dependent damage mechanism known as Delayed Hydride Cracking, or DHC. Corrosion of the zirconium alloy in the presence of water generates hydrogen that subsequently diffuses through the metallic structure towards stress concentrating features such as notches or cracks. Canadian standard CSA N285.8–10 uses a process-zone modelling approach to define a threshold stress level beyond which DHC is predicted to occur. The process-zone analysis to calculate the threshold stress level generally proceeds by representing the process-zone as a crack, the length of which is determined by the superposition of stress intensity factors obtained from handbook solutions or cracked-body finite element models. Process-zone models are a subset of the more general class of cohesive-zone models and cohesive elements are available in a number of standard finite element codes. Cohesive elements can be used to simulate the process-zone response, or indeed more complex cohesive behaviour. In this paper, the stress and displacement results from finite element based cohesive-zone modelling of a sharp crack and blunt notches of various root radii are compared with analytical process-zone solutions. The cohesive-zone results are also compared with the process-zone formulation used in CSA N285.8–10. The results show that finite element based cohesive-zone analysis can be used to replicate the process-zone results. The key benefit of finite element based cohesive-zone modelling is that it provides a framework for investigating the DHC characteristics of arbitrary hydride distributions, using readily available techniques.


2010 ◽  
Vol 168-170 ◽  
pp. 217-221
Author(s):  
Xiu Shan Wang ◽  
Xiao Jun Ding ◽  
Yong Li Xie

In order to predict the permanent deformation of graded gravel, through to the existing flexible pavement granular base permanent deformation estimate model's contrastive analysis, combined with repeated dynamic triaxial test , selects Wei Mi permanent deformation estimate model as the loose aggregate permanent deformation of the estimate model, using 1stopt statistical analysis software carries on the nonlinear curve fit for the parameter, obtained two kinds of norms of graded broken stone aggregates forecast model of the correlation among the types : permanent deformation of the coefficient and water content and resilient modulus, and their reliability was analyzed. Analysis result shows that when load acting time reaches 10 000, the minimum and average correlative coefficients of the regression formulas is 0.4144 ,0.6340 and 0.5080, which is greater than the critical value of 0.3993, and the correlative coefficient between theoretical curve and measured one is more than 0.96. So the reliability of the proposed prediction formulas of permanent deformation for graded gravel is higher, can be used to forecast China's Asphalt Pavement Rutting.


Sign in / Sign up

Export Citation Format

Share Document