Permanent Deformation Prediction Model of Graded Gravel under Repeated Load

2010 ◽  
Vol 168-170 ◽  
pp. 217-221
Author(s):  
Xiu Shan Wang ◽  
Xiao Jun Ding ◽  
Yong Li Xie

In order to predict the permanent deformation of graded gravel, through to the existing flexible pavement granular base permanent deformation estimate model's contrastive analysis, combined with repeated dynamic triaxial test , selects Wei Mi permanent deformation estimate model as the loose aggregate permanent deformation of the estimate model, using 1stopt statistical analysis software carries on the nonlinear curve fit for the parameter, obtained two kinds of norms of graded broken stone aggregates forecast model of the correlation among the types : permanent deformation of the coefficient and water content and resilient modulus, and their reliability was analyzed. Analysis result shows that when load acting time reaches 10 000, the minimum and average correlative coefficients of the regression formulas is 0.4144 ,0.6340 and 0.5080, which is greater than the critical value of 0.3993, and the correlative coefficient between theoretical curve and measured one is more than 0.96. So the reliability of the proposed prediction formulas of permanent deformation for graded gravel is higher, can be used to forecast China's Asphalt Pavement Rutting.

1979 ◽  
Vol 16 (4) ◽  
pp. 798-802 ◽  
Author(s):  
P. N. Gaskin ◽  
G. P. Raymond ◽  
F. Y. Addo-Abedi ◽  
J. S. Lau

Twelve repeated load drained triaxial tests to at least 105 cycles on a sand are reported. A threshold stress of about 50% of the static failure strength was found. Below the threshold stress, the permanent deformation and resilient modulus reached constant values. Above the threshold stress, the permanent deformation began to increase rapidly and the resilient modulus to decrease as the number of stress cycles increased. The importance of keeping the traffic stress in the pavement below the threshold stress is outlined.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 621
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

Recycled Excavation Materials (REM) are becoming viable alternative construction resources due to their economic benefits. However, REM may be composed of weak rocks, e.g., phyllites, limiting the use in a base layer. The present paper attempts to further the knowledge of the mechanical performance of REM by performing Repeated Load Triaxial Tests (RLTT). REM are mixed with Recycled Phyllite Materials (RPM) in systematic blends of 0%, 25%, 50%, and 100%. The batches’ resilient modulus (MR) and permanent deformation (PD) characteristics were assessed to establish the maximum RPM allowed into REM while maintaining the required performance. Hicks and Monismith’s and Uzan’s models were used to characterize the stiffness behavior. A wide variation in the stiffness between the two materials was observed. Batches comprised of 0% RPM–100% REM and 25% RPM–75% REM showed high stiffness performance. The Coulomb model assessed the PD behavior, and the results showed a similar response for all batches. Unlike the stiffness, blended mixtures did not show sensitivity to increased RPM content in the PD. This study may help end-users to understand the performance of REM given the documented threshold on the allowable quantity of RPM in REM.


1954 ◽  
Vol 3 (15) ◽  
pp. 314-317
Author(s):  
Minoru KAWAMOTO ◽  
Tadakazu SAKURAI ◽  
Morio SEKI

2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Sign in / Sign up

Export Citation Format

Share Document