Interpretation of cone penetration tests. Part II: Clay

1983 ◽  
Vol 20 (4) ◽  
pp. 734-745 ◽  
Author(s):  
P. K. Robertson ◽  
R. G. Campanella

This paper is the second of two parts and presents a summarized work guide for practicing engineers for interpretation of parameters for undrained conditions during the cone penetration test such as, undrained shear strength, overconsolidation ratio, and deformation characteristics of clay. The advantages, use, and interpretation of the piezometer cone are also discussed. Factors that influence the interpretations are discussed and guidelines provided. The companion paper, Part I: Sand, considers drained conditions during the test and summarizes interpretation of parameters such as relative density, friction angle, and deformation characteristics of sand. The authors' personal experiences and current recommendations are included. Keywords: static cone penetration testing, in-situ, interpretation, shear strength, modulus, stress history, pore pressures, permeability, consolidation.


Author(s):  
P. S. Finn ◽  
R. M. Nisbet ◽  
P. G. Hawkins

AbstractBS 5930 provides little guidance on the specification, practice and interpretation of pressuremeter, flat dilatometer and cone penetration tests. This paper describes certain key elements in the successful use of such tests which are frequently overlooked in practice. The different types of pressuremeter available in the United Kingdom are reviewed and the importance of care in the installation of pressuremeters of all types is highlighted. The principles of operation of the flat dilatometer are presented and comments made on the interpretation and application of results. Cone penetrometer testing and the types of equipment available are also discussed. The necessity for frequent and thorough calibration of all testing devices is emphasised and requirements for data presentation and reporting of these in situ tests are indicated.



1979 ◽  
Vol 16 (3) ◽  
pp. 591-604 ◽  
Author(s):  
Rémy Maranda ◽  
Denis-Jacques Dion

The resistance obtained from static cone penetration tests is compared to the in situ vane shear strength, for the soft to firm clays in the St. Lawrence Lowlands.The average factor Nk, obtained on five sites, varies between values of 2.5–18.4. As a result of this study it is not possible to propose a unique value of Nk to be assigned to Champlain Sea clays. As pointed out by Schmertmann and confirmed in the present analysis, the correlation between field vane and static cone penetration tests must be defined for each site.The soft deposits of the St. Lawrence Lowlands are well suited for studies by means of static cone penetration tests, which are very effective for determining the stratigraphy on the basis of the variations of the point resistance and the friction ratio. [Journal translation]



2020 ◽  
Vol 205 ◽  
pp. 04005
Author(s):  
Philip J. Vardon ◽  
Joek Peuchen

A method of utilizing cone penetration tests (CPTs) is presented which gives continuous profiles of both the in situ thermal conductivity and volumetric heat capacity, along with the in situ temperature, for the upper tens of meters of the ground. Correlations from standard CPT results (cone resistance, sleeve friction and pore pressure) are utilized for both thermal conductivity and volumetric heat capacity for saturated soil. These, in conjunction with point-wise thermal conductivity and in situ temperature results using a Thermal CPT (T-CPT), allow accurate continuous profiles to be derived. The CPT-based method is shown via a field investigation supported by laboratory tests to give accurate and robust results.



1983 ◽  
Vol 20 (4) ◽  
pp. 718-733 ◽  
Author(s):  
P. K. Robertson ◽  
R. G. Campanella

Significant advances have been made in recent years in research, development, interpretation, and application of cone penetration testing. The addition of pore pressure measurements during cone penetration testing has added a new dimension to the interpretation of geotechnical parameters.The cone penetration test induces complex changes in stresses and strains around the cone tip. No one has yet developed a comprehensive theoretical solution to this problem. Hence, the cone penetration test provides indices which can be correlated to soil behaviour. Therefore, the interpretation of cone penetration data is made with empirical correlations to obtain required geotechnical parameters.This paper discusses the significant recent developments in cone penetration testing and presents a summarized work guide for practicing engineers for interpretation for soil classification, and parameters for drained conditions during the test such as relative density, drained shear strength, and deformation characteristics of sand. Factors that influence the interpretation are discussed and guidelines provided. The companion paper, Part II: Clay, considers undrained conditions during the test and summarizes recent developments to interpret parameters for clay soils, such as undrained shear strength, deformation characteristics of clay, stress history, consolidation characteristics, permeability, and pore pressure. The advantages and use of the piezometer cone are discussed as a separate topic in Part II: Clay. The authors' personal experiences and current recommendations are included. Keywords: static cone penetration testing, in situ, interpretation, shear strength, modulus, density, stress history, pore pressures.



2021 ◽  
pp. 106252
Author(s):  
Yongfeng Deng ◽  
Haochen Xue ◽  
Yongxin Wu ◽  
Tongwei Zhang ◽  
Zilong Wu ◽  
...  


2019 ◽  
Author(s):  
Hiroshi Nakazawa ◽  
Toshio Takagi ◽  
Hisao Hayashi ◽  
Koichi Nagao


2009 ◽  
Vol 26 (9) ◽  
pp. 1716-1723 ◽  
Author(s):  
Achim Kopf ◽  
Sylvia Stegmann ◽  
Georg Delisle ◽  
Behrouz Panahi ◽  
Chingiz S. Aliyev ◽  
...  


2001 ◽  
Vol 38 (3) ◽  
pp. 592-607 ◽  
Author(s):  
K M Lee

The reclamation for the new airport at Chek Lap Kok in Hong Kong included the placement of a substantial volume of sand fill by various hydraulic placement techniques, which resulted in a wide range of as-placed densities of the sand fill. This paper described the use of cone penetration tests (CPT) on the evaluation of the possible ranges of density achievable by various hydraulic placement methods adopted in the construction of the new airport. The results of the CPT indicated that the placement technique is one of the most important factors in controlling the as-placed density of hydraulically placed sand fill. There is a marked contrast in cone tip resistance (and the associated relative density) profiles for the sand fills formed by subaerial and subaqueous placement methods, in which the cone tip resistance of the sand fill formed by subaerial placement is substantially higher than that of the sand fill formed by subaequeous placement. The results confirm that dense sand fill cannot be formed by subaqueous placement methods. The weakest zone is generally located just beneath the water level where fill is placed by subaqueous discharge.Key words: sand, hydraulic fill, cone penetration test, calibration chamber test, in situ density.



Sign in / Sign up

Export Citation Format

Share Document