Synthesis of heteronuclear bifunctional Lewis acids by transmetalation of 1,8-bis(trimethylstannyl)naphthalene with BCl3

2002 ◽  
Vol 80 (10) ◽  
pp. 1308-1312 ◽  
Author(s):  
Marcus Schulte ◽  
François P Gabbaï

Reaction of 1,8-bis(trimethylstannyl)naphthalene (1) with an excess of BCl3 at –78°, followed by warming to 0°C, results in the exclusive formation of the novel bifunctional Lewis acid 1-(chlorodimethylstannyl)-8-(dichloroboryl)naphthalene (2), a compound in which a boryl and a stannyl moiety coexist at the peri-positions of a naphthalene core. At elevated temperature compound 2 undergoes a chloride–methyl exchange, which affords 1-(dichloromethylstannyl)-8-(chloromethylboryl)naphthalene (3). Compounds 2 and 3 have been characterized by multi-nuclear NMR spectroscopy. The single crystal X-ray analysis for compound 3 reveals a sterically crowded structure with an essentially trigonal planar boron center, and a tin center pentacoordinated in a [4+1]-fashion. Upon exposure to traces of water, compound 3 is converted into the borinic acid derivative 1-(dichloromethylstannyl)-8-(hydroxymethylboryl)naphthalene (4), which has been characterized by multi-nuclear NMR spectroscopy and single crystal X-ray analysis.Key words: multidentate Lewis acids, organoboranes, organostannanes.

2012 ◽  
Vol 67 (6) ◽  
pp. 589-593 ◽  
Author(s):  
Daniel Winkelhaus ◽  
Beate Neumann ◽  
Norbert W. Mitzel

The reaction of (C6F5)2BCl with 8-lithio-N,N-dimethyl-1-naphthylamine (1) afforded the fivemembered ring system 8-bis(pentafluorophenyl)boryl-N,N-dimethyl-1-naphthylamine (2) with an intramolecular dative B-N bond. The compound was characterised by elemental analysis, NMR spectroscopy and single-crystal X-ray diffraction.


2018 ◽  
Vol 22 (07) ◽  
pp. 562-572
Author(s):  
Ruoshi Li ◽  
Matthias Zeller ◽  
Christian Brückner

We describe the oxidative ring opening of octaethyl-2-oxochlorin using two different oxidation methods, both providing a mixture of all possible regioisomeric products (8-[Formula: see text] through 8-[Formula: see text]. While isomers 8-[Formula: see text], 8-[Formula: see text], and 8-[Formula: see text] formed in isolable yields and relative ratios that varied with the oxidation method used, isomer 8-[Formula: see text] was invariably formed in trace amounts only. The three major products were spectroscopically characterized (IR, MS, 1D- and 2D NMR spectroscopy) and their configurations were deduced by NMR spectroscopy. The spectroscopic findings correlated well with the single crystal X-ray structure of the novel cleavage product 8-[Formula: see text] and the known compound of 8-[Formula: see text]. The work broadens the number of octaethylporphyrin-derived biliverdin derivatives available and presents a methodology of controlling the biliverdin backbone configuration by introduction of a [Formula: see text]-ketone functionality into select positions.


1990 ◽  
Vol 45 (10) ◽  
pp. 1407-1415 ◽  
Author(s):  
Johannes Breker ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

The reaction of the tetrachlorophosphoranes RPCl4 (R=Me, Ph) with N,N′-dimethylurea (dmh) (1), or of the diazaphosphetidinone O=C(NMe)2PR (R=CCl3) (3) and chlorine with N,N′-bis(trimethylsilyl)-N,N′-dimethylurea (2) furnished the spiro compounds RP[(NMe)2C=O]2 (7-9). The dichlorophosphoranes O=C(NMe)2PRCl2 (4-6) are intermediates in these reactions; 4 and 6 were isolated but 5 could not be obtained pure. In the reaction of 4 with 2 a mixture of products was formed, from which the novel tricyclic diphosphorane 1,3,4,6,7,9,10-heptamethyl-5-oxa-1,3,7,9,10-pentaaza-4 λ5,6 λ5-diphosphadispiro-[3.1.3.1]decane-2,8-dione (10) was isolated in low yield. Its identity and structure were established by 1H, 13C and 31P NMR spectroscopy and by a single crystal X-ray structure determination, which confirmed the presence of the novel oxazadiphosphetidine ring. 10 crystallizes in C2/c with a = 1321.1(3), b = 687.6(1), c = 1674.5(3) pm, β= 103.30(2)° and Z = 4; R = 0.039 for 1437 unique observed reflections. A crystallographic twofold axis passes through the Me-N···O moiety of the central ring


1997 ◽  
Vol 62 (5) ◽  
pp. 746-751 ◽  
Author(s):  
Andreas Franken ◽  
Jaromír Plešek ◽  
Christiane Nachtigal

On treatment of the [(1,2-C2B9H11)2Co]- ion with naphthalene in presence of AlCl3 a remarkably bridged [8,8'-μ-(CH2-C9H6)-(1,2-C2B9H10)2-3-Co]- ion is obtained as a single isolated compound. The triatomic -CH2-C9H6- bridge is derived from the rearranged naphthalene nucleus. The mechanism of this reaction is obscure but it does resemble the "Electrophile-Induced Nucleophilic Substitution" reported earlier. The structure of the compound was established by multinuclear NMR spectroscopy and by single crystal X-ray diffraction.


1993 ◽  
Vol 58 (12) ◽  
pp. 2924-2935 ◽  
Author(s):  
Jane H. Jones ◽  
Bohumil Štíbr ◽  
John D. Kennedy ◽  
Mark Thornton-Pett

Thermolysis of [8,8-(PMe2Ph)2-nido-8,7-PtCB9H11] in boiling toluene solution results in an elimination of the platinum centre and cluster closure to give the ten-vertex closo species [6-(PMe2Ph)-closo-1-CB9H9] in 85% yield as a colourles air stable solid. The product is characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Crystals (from hexane-dichloromethane) are monoclinic, space group P21/c, with a = 903.20(9), b = 1 481.86(11), c = 2 320.0(2) pm, β = 97.860(7)° and Z = 8, and the structure has been refined to R(Rw) = 0.045(0.051) for 3 281 observed reflections with Fo > 2.0σ(Fo). The clean high-yield elimination of a metal centre from a polyhedral metallaborane or metallaheteroborane species is very rare.


1979 ◽  
Vol 34 (3) ◽  
pp. 434-436 ◽  
Author(s):  
A. Müller ◽  
S. Pohl ◽  
M. Dartmann ◽  
J. P. Cohen ◽  
J. M. Bennett ◽  
...  

Abstract The novel tri-nuclear metal-sulfur cluster [Mo3S(S2)6]2- can be obtained as its ammonium salt by the reaction of a Moiv containing aqueous solutions with polysulfide. Its crystal and molecular structure has been determined by a single crystal X-ray study. The crystals are monoclinic (space group Cm, with a = 11.577(6) Å, b = 16.448(7) Å, c = 5.716(2) Å, β = 117.30(3)°, V = 967.2 Å3 , Z = 2, dexptl. = 2.54(2) g/cm3 , dcal = 2.54 g/cm3). The structure consists of isolated [Mo3S(S2)6]2- units, with three Mo atoms at the vertices of a triangle. There are bridging as well as terminal S22--ligands lying above and below the Mo3-plane (bond distances: Mo-Mo = 2.722 Å, Mo-S(terminal) = 2.435, Mo-S(bridging) = 2.452, Mo3-S = 2.353(4) Å and S-S = 2.04 Å (mean values)).


Molbank ◽  
10.3390/m1077 ◽  
2019 ◽  
Vol 2019 (3) ◽  
pp. M1077
Author(s):  
Lan ◽  
Zheng ◽  
Wang

The compound 2-(3,5-dimethyl-1H-pyrazol-1-yl)thiazolo[4,5-b]pyridine (1) was synthesized with a yield of 71% by the reaction of 1-(thiazolo[4,5-b]pyridine-2-yl)hydrazine and acetylacetone. The structure was characterized by a single-crystal X-ray structure determination as well as 1H and 13C{1H} NMR spectroscopy. X-ray crystallography on 1 confirms the molecule consists of a pyridine–thiazole moiety and the pyrazole ring, and all non-hydrogen atoms are planar.


1995 ◽  
Vol 48 (9) ◽  
pp. 1511 ◽  
Author(s):  
SG Pyne ◽  
J Safaei-G ◽  
BW Skelton ◽  
AH White

The 1,3-dipolar cycloaddition reactions of the chiral oxazolidinone (1) and nitrones are highly regioselective and only 5,5-disubstituted isoxazolidine adducts are formed. These reactions occur under equilibrating conditions to give the more stable adducts that result from addition to the exocyclic methylene of (1) from the sterically more hindered π-face. The endo adducts are generally thermodynamically favoured. In one case the novel azetidine (21) was formed from the treatment of the adduct (4a) with palladium hydroxide on carbon under a hydrogen atmosphere. The major adducts from the reaction of (1) and nitrile oxides (16a,b) had the expected stereochemistry, addition of the 1,3-dipole having occurred from the less hindered π-face of the exocyclic methylene of (1). The stereochemistry of many of these products has been elucidated by single-crystal X-ray structural determinations.


2009 ◽  
Vol 64 (9) ◽  
pp. 1065-1069 ◽  
Author(s):  
Mehdi Rimaz ◽  
Jabbar Khalafy ◽  
Khadijeh Tavana ◽  
Katarzyna Ślepokura ◽  
Tadeusz Lis ◽  
...  

Diethyl 2,2´-thiocarbonyl-bis(azanediyl)dibenzoate was synthesized from the reaction of ethyl anthranilate with thiophosgene. Its treatment with sodium ethoxide in ethanol at room temperature gave ethyl 2-(4-oxo-2-thioxo-1,2-dihydroquinazolin-3(4H)-yl) benzoate, whereas in the presence of ethyl nitroacetate and under the same reaction conditions, the corresponding bis(quinazolin)disulfide was formed. Its structure was confirmed by IR, 1H and 13C NMR spectroscopy elemental analysis and single crystal X-ray structure determination.


Sign in / Sign up

Export Citation Format

Share Document