Synthesis and organic group transfer of organodiplatinum complex with a 1,2-bis(diphenylphosphino)ethane ligand

2009 ◽  
Vol 87 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Nobuyuki Komine ◽  
Tomoko Ishiwata ◽  
Jun-ya Kasahara ◽  
Erino Matsumoto ◽  
Masafumi Hirano ◽  
...  

A series of homometallic alkyl- and phenyldinuclear complexes containing one platinum–platinum bond, (dppe)RPt–Pt(η5-Cp)(CO) (R = Me, Et, CH2CMe3, Ph), have been prepared by oxidative addition of the Pt–C bond of PtR(η5-Cp) to Pt(styrene)(dppe), and were characterized by spectroscopic methods and (or) X-ray structure analysis. The geometry at Pt with a dppe ligand is square planar, and the carbonyl and Cp ligand of the Pt(η5-Cp)(CO) moiety lie orthogonal to the coordination plane of former platinum. Competitive organic group transfer reactions along the Pt–Pt bond in these complexes took place to give PtR(η5-Cp)(CO) and PtR(η1-Cp)(dppe) on thermolysis. Alkyl or aryl transfer from Pt with a dppe ligand were enhanced by addition of olefin, whereas treatment with CO and tertiary phosphine ligands causes Cp transfer from Pt(η5-Cp)(CO).Key words: organoplatinum–platinum complex, organic group transfer.

1988 ◽  
Vol 66 (12) ◽  
pp. 3162-3165 ◽  
Author(s):  
Elmer C. Alyea ◽  
George Ferguson ◽  
John Malito ◽  
Barbara L. Ruhl

The bulky trimesitylarsine ligand, As(mes)3, undergoes facile cyclopalladation to yield the dimeric complex, [Formula: see text], characterized by microanalysis, IR and 1H NMR spectroscopy. This complex is very stable but readily undergoes bridge-cleavage reactions with tertiary phosphine ligands having ligand cone angles less than 170°. The crystal structure for the PPh3 bridge-cleavage product is reported. This complex, [Formula: see text] is monoclinic, space group P21/c with a = 20.469(2), b = 12.702(2), c = 15.401(4) Å, β = 98.46(1)°, V = 3961 Å3Z = 4, R = 0.0284 and Rw = 0.0305. The Pd geometry is distorted square-planar with principal dimensions, Pd—Cl 2.395(1), Pd—P 2.318(1), Pd—C 2.056(3), and Pd—As 2.437(1) Å; As—Pd—Cl 96.5(1), Cl—Pd—P 90.9(1), P—Pd—C 93.7(1), As—Pd—C 78.9(1), As—Pd—P 172.6(1), and Cl—Pd—C 171.7(1)°. The average C—P—C angle (104.3(1)°) is smaller than expected and is rationalized on the basis of steric effects operative within the complex.


1979 ◽  
Vol 57 (1) ◽  
pp. 57-61 ◽  
Author(s):  
R. Melanson ◽  
F. D. Rochon

The crystal structure of [Pt(diethylenetriamine)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 12.486(6), b = 13.444(7), c = 14.678(11) Å, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.050 and a weighted Rw = 0.045.The coordination around the platinum atom is square planar. Guanosine is bonded to platinum through N(7). The purine planar ring makes an angle of 62.7° with the platinum coordination plane. The structure is stabilized by hydrogen bonding.


1983 ◽  
Vol 36 (7) ◽  
pp. 1341 ◽  
Author(s):  
KR Morgan ◽  
GJ Gainsford ◽  
NF Curtis

Reduction of 4,4,12,12-tetramethyl-5,8,11-triazapentadecane-2,14-dione diperchlorate by sodium borohydride yields as the major product one isomer of 4,4-dimethyl-7-(5,5,7-trimethyl-1,2-diazepam 1-yl)-5-azaheptan-2-ol, pyaz. The coordination compounds [M(pyaz)] (ClO4), and [Ni(pyaz)(NCS)] CNS (M = NiII, CuII) were prepared, the latter being assigned five-coordinate structures. The structure of singlet ground state [Ni(pyaz)] (ClO4)2 was determined by X-ray diffraction [space group P212121, Z 4, a 1450.8(2), b 1522.2(1), c 1048.5(1) pm, R 0.0675, Rw 0.0768 for 2461 reflections]. The compound has a square-planar coordination arrangement, with the three nitrogen and the oxygen donor atoms of the pyaz ligand approximately coplanar [Ni-O 190.0(6) pm; Ni-N 192.8(6), 189.2(6), 189.2(6) pm in sequence N(5) of chain, N(l), N(4) of diazepane]. The diazepane ring adopts a boat conformation. One side of the nickel(II) coordination plane is sterically crowded by the presence of two axial methyl substituents. The ligand has two non-equivalent chiral centres (C(14) of the diazepane ring and C(2) of the amine alcohol chain), both present in the R configuration in the crystal studied. The three nitrogen atoms, which became chiral centres upon coordination, are present in the S configuration for two diazepane nitrogen atoms and in the R configuration for the 5-aza chain nitrogen.


1984 ◽  
Vol 62 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Sara Ariel ◽  
David Dolphin ◽  
George Domazetis ◽  
Brian R. James ◽  
Tak W. Leung ◽  
...  

The ruthenium(II) porphyrin complex Ru(OEP)(PPh3)2 (OEP = the dianion of octaethylporphyrin) has been prepared from Ru(OEP)(CO)EtOH, and the X-ray crystal structure determined; as expected, the six-coordinate ruthenium is situated in the porphyrin plane and has two axial phosphine ligands. Synthesized also from the carbonyl(ethanol) precursors were the corresponding tris(p-methoxyphenyl)phosphine complex, and the Ru(TPP)L2 (TPP = the dianion of tetraphenylporphyrin, L = PPh3, P(p-CH3OC6H4)3, P″Bu3) and Ru(TPP)(CO)PPh3 complexes. Optical and 1H nmr data are presented for the complexes in solution. In some cases dissociation of a phosphine ligand to generate five-coordinate species occurs and this has been studied quantitatively in toluene at 20 °C for the Ru(OEP)L2 and Ru(TPP)L2 systems.


2017 ◽  
Vol 73 (8) ◽  
pp. 1148-1150
Author(s):  
Shravan Kumar Ellandula ◽  
Cosmos Opoku Amoako ◽  
Joel T. Mague ◽  
Perumalreddy Chandrasekaran

The unsymmetrical α-diimine ligand N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline, [ArN=C(Me)—(Et)C=NAr] [Ar = 2,6-(iPr)2C6H3], (I), and the corresponding palladium complex, cis-(N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)dichloridopalladium(II) 1,2-dichloroethane monosolvate, [PdCl2(C29H42N2)]·C2H4Cl2 or cis[PdCl2{I}], (II), have been synthesized and characterized. The crystal and molecular structure of the palladium(II) complex have been established by single-crystal X-ray diffraction. The compound crystallized along with a 1,2-dichloroethane solvent of crystallization. The coordination plane of the PdII atom shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the PdCl2 and PdN2 planes of 4.19 (8)°. The chelate ring is folded along the N...N vector by 7.1 (1)°.


1983 ◽  
Vol 255 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Ronald J. Cross ◽  
Alistair J. McLennan

2018 ◽  
Vol 5 (2) ◽  
pp. 171340 ◽  
Author(s):  
Marcelo Echeverri ◽  
Amparo Alvarez-Valdés ◽  
Francisco Navas ◽  
Josefina Perles ◽  
Isabel Sánchez-Pérez ◽  
...  

Three platinum complexes with cis and trans configuration cis -[Pt(TCEP) 2 Cl 2 ], cis -[Pt(tmTCEP) 2 Cl 2 ] and trans -[Pt(TCEP) 2 Cl 2 ], where TCEP is tris(2-carboxyethyl)phosphine, have been synthesized and fully characterized by usual techniques including single-crystal X-ray diffraction for trans -[Pt(TCEP) 2 Cl 2 ] and cis -[Pt(tmTCEP) 2 Cl 2 ]. Here, we also report on an esterification process of TCEP, which takes place in the presence of alcohols, leading to a platinum complex coordinated to an ester tmTCEP (2-methoxycarbonylethyl phosphine) ligand. The stability in solution of the three compounds and their interaction with biological models such as DNA (pBR322 and calf thymus DNA) and proteins (lysozyme and RNase) have also been studied.


1990 ◽  
Vol 45 (11) ◽  
pp. 1548-1558 ◽  
Author(s):  
Helmut Werner ◽  
Andreas Hampp ◽  
Karl Peters ◽  
Eva Maria Peters ◽  
Leonhard Walz ◽  
...  

Square-planar rhodium(I) complexes [RhCl(iPr2PC2H4Y)2] (8, 9) containing one chelating and one P-bonded monodentate phosphine ligand are prepared from [RhCl(C8H14)2]2 (7) and the new functionalized phosphines iPr2PC2H4Y (5,6). Reaction of 9 (Y = NMe2) with CO and of 8 (Y = OMe) with CO, C2H4, C2H2, C2Ph2 and HC2Ph leads to opening of the chelate ring and formation of the complexes trans-[RhCl(L)(η1-P–iPr2PC2H4Y)2] (10-15). Treatment of 8 with H2 gives the dihydridorhodium(III) compound [RhH2Cl(iPr2PC2H4OMe)2] (16). The vinylidene complexes trans-[RhCl(=C=CHR)(η1-P– iPr2PC2H4OMe)2] (17, 18) are obtained by thermal or pyridine promoted rearrangement of 13 (L = C2H2) and 15 (L = HC2Ph). 13 and 15 have also been used as starting materials for the synthesis of the cyclopentadienyl alkyne and vinylidene complexes 19-21. The X-ray crystal structure of the parent compound 8 was determined.


1989 ◽  
Vol 67 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Eric Berry ◽  
Jane Browning ◽  
Gordon William Bushnell ◽  
Keith Roger Dixon ◽  
Alan Pidcock

Reaction of "cyclamphosphorane" (cyclamPH) with [Pt2Cl4(PEt3)2] yields [PtCl(PEt3)(cyclamPH)]Cl. The complex crystallizes as a dichloromethane solvate in the monoclinic space group P21/n, with a = 13.877(3), b = 23.231(7), c = 8.295(2)Å, β = 91.86(4)°, and an X-ray diffraction study shows square planar platinum coordination in which the labile proton of cyclamPH has transferred from phosphorus to nitrogen and the ligand is attached via simple [Formula: see text] chelation. The phosphorus is trans to chlorine in the platinum coordination plane.The corresponding product, trans-[PtCl2(PEt3)(cyclenPH2)]Cl, derived from reaction of "cyclenphosphorane" (cyclenPH) with [Pt2Cl4(PEt3)2], is shown by NMR studies to have a quite different structure in which the ligand is protonated at two nitrogen sites but not at phosphorus. The phosphorus is pentacoordinate with four attachments to nitrogen atoms and one to platinum. The two chlorine atoms are mutually trans in the platinum coordination plane. Keywords: crystal structure, cyclenphosphorane reaction, cyclamphosphorane reaction, X-ray diffraction.


1980 ◽  
Vol 58 (4) ◽  
pp. 381-386 ◽  
Author(s):  
F. D. Rochon ◽  
P. C. Kong ◽  
B. Coulombe ◽  
R. Melanson

The interactions between [Pd(dien)Cl]Cl and some nucleosides and nucleotides were studied by nmr. The binding site of guanosine, guanosinemonophosphoric acid, xanthosine, and inosine is N(7). Cytidine is coordinated to palladium through N(3). Adenosinemonophosphate acts as a bidentate, binding two different palladium atoms at N(1) and N(7).The crystal structure of [Pd(dien)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 13.422, b = 14.587, c = 12.432, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.047 and a weighted Rw = 0.043. The coordination around the palladium atom is square planar. Guanosine is bonded to palladium through N(7). The planar purine ring makes an angle of 63.4° with the palladium coordination plane. The structure is stabilized by hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document