THE REACTIONS OF TRIFLUOROMETHYL RADICALS WITH PROPANE, n-BUTANE, AND ISOBUTANE

1956 ◽  
Vol 34 (2) ◽  
pp. 103-107 ◽  
Author(s):  
P. B. Ayscough ◽  
E. W. R. Steacie

A study of the reactions of trifluoromethyl radicals, produced by the photolysis of hexafluoroacetone, with propane, n-butane, and isobutane has been made. The rate constants of the hydrogen-abstraction reactions have been determined at temperatures between 27 °C and 119 °C and the activation energies found to be 6.5 ± 0.5, 5.1 ± 0.3, and 4.7 ± 0.3 kcal./mole respectively. These values are compared with those obtained for the reactions with methane and ethane, and with the corresponding reactions of methyl radicals.


1979 ◽  
Vol 32 (5) ◽  
pp. 1025 ◽  
Author(s):  
NL Arthur ◽  
PJ Newitt

Hydrogen abstraction from CF3COOCH3 and CH3COCH3 by CH3 radicals CF3 + CF3COOCH3 → CH4 + CF3COOCH2 (1) CF3 + CF3COOCH3 → CH4 + CH3COCH2 (3) has been studied in the temperature range 117-244�. The rate constants, based on the value of 1013.34 cm3 mol-1 s-1 for the recombination of CH3 radicals, are given by (k in cm3 mol-1 s-1 and E in J mol-1) : logk1 = (10.39 � 0.11)- (37680 � 880)/19.145T logk3 = (11.53 � 0.02)- (40590 � 170)/19.145T CF3COOCH3 is less susceptible to attack by CH3 radicals than by CF3 radicals by a factor of 2.8 at 400 K, due mainly to a difference in A factors, since the activation energies of the two reactions are almost identical. These results can be rationalized in terms of intermolecular polar repulsion between the CF3 radical and CF3COOCH3.



1980 ◽  
Vol 33 (7) ◽  
pp. 1437
Author(s):  
NL Arthur ◽  
PJ Newitt

Hydrogen abstraction by CF3 radicals from CH3COOCH3 and CD3COOCH3 has been studied in the temperature range 78-242°, and data have been obtained for the reactions: CF3 + CH3COOCH3 → CF3H+[C3H5O2] �������������(3) CF3 + CH3COOCH3 → CF3H+CH2COOCH3������������ (4) CF3 + CD3COOCH3 → CF3D+CD2COOCH3������������ (6) CF3 + CD3COOCH3 → CF3H+CD3COOCH2������������ (7) The corresponding rate constants, based on the value of 1013.36 cm3 mol-1 S-1 for the recombination of CF3 radicals, are given by (k in cm3 mol-1 s-1 and E in J mol-1): logk3 = (11.52�0.05)-(35430�380)/19.145T ���� (3)logk4 = (11.19�0.07)-(34680�550)/19.145T ���� (4)logk6 = (11.34�0.06)-(46490�490)/19.145T ���� (6)logk7 = (11.26�0.05)-(36440�400)/19.145T ���� (7)At 400 K, 59% of abstraction occurs from the acetyl group, and 41 % from the methoxy group. The kinetic isotope effect at 400 K for attack on the acetyl group is 25, due mainly to a difference in activation energies.



1958 ◽  
Vol 36 (12) ◽  
pp. 1729-1734 ◽  
Author(s):  
J. E. Hazell ◽  
K. E. Russell

The reaction of DPPH (2,2-diphenyl-1-picrylhydrazyl) with N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine, diphenylamine, and methylaniline has been studied and has been shown to be primarily a hydrogen abstraction process. Two moles DPPH react with 1–1.15 moles secondary amine to give 1.7–1.8 moles 2,2-diphenyl-1-picrylhydrazine and further products.The reaction between DPPH and N-phenyl-1-naphthylamine is first order with respect to each reactant. The reaction of DPPH with the other amines is retarded by the major product 2,2-diphenyl-1-picrylhydrazine and the kinetics of the over-all reaction are complex. However second-order rate constants and activation energies have been obtained using initial rates of reaction. Possible reaction mechanisms are discussed.



1960 ◽  
Vol 38 (11) ◽  
pp. 2128-2135 ◽  
Author(s):  
S. J. W. Price ◽  
K. O. Kutschke

The reactions of C2F5 radicals, produced by the photolysis of (C2F5)2CO, with methane and hydrogen have been studied. Assuming zero activation energy for 2C2F5 → C4F10 the activation energies for C2F5 + CH4 → C2F5H + CH3 and C2F5 + H2 → C2F5H + H are 10.6 kcal/mole and 11.9 kcal/mole respectively. The present results have been correlated with data on the reactions of CF3, C3F7, and CH3 radicals with H2, D2, CH4, and C2H6. Taking Erecombination ≈ 0 in all cases and assuming the frequency factor for the recombination reaction varies little from radical to radical, the order of ease of hydrogen abstraction from a given substrate is CF3 > C2F5 > C3F7 > CH3. Similarly the ease of hydrogen abstraction from a substrate by a given fluorinated radical is C2H6 > H2 > CH4 > D2. A calculation based on very limited data indicates the reaction CH3 + C2F5COC2F5 → CH3COC2F5 + C2F5 may occur with an activation energy of approximately 7 kcal/mole.



1967 ◽  
Vol 45 (2) ◽  
pp. 157-159 ◽  
Author(s):  
M. Krech ◽  
S. J. W. Price

With dimethyl mercury and dimethyl cadmium as sources of methyl radicals, values of k1/k21/2 for the reactions [Formula: see text] [Formula: see text]have been calculated from 471 to 527 °C over the pressure range 0.3 to 16.2 cm. Extrapolation to the effective infinite pressure region, where it is assumed that E2 = 0, gives E1 = 9.3 kcal mole−1, log A1 = 10.8 (cc mole−1 s−1).



1955 ◽  
Vol 33 (5) ◽  
pp. 743-749 ◽  
Author(s):  
P. B. Ayscough ◽  
J. C. Polanyi ◽  
E. W. R. Steacie

The photolytic decomposition of hexafluoroacetone by light of wavelength 3130 Å has been used to produce trifluoromethyl radicals for a study of their reactions with methane and ethane. It has been shown that these radicals abstract hydrogen with greater facility than do methyl radicals. The activation energies for the two reactions[Formula: see text]and[Formula: see text]are found to be 10.3 ± 0.5 kcal./mole and 7.5 ±0.5 kcal./mole respectively, if one can assume zero activation energy for the recombination of trifluoromethyl radicals.



1976 ◽  
Vol 29 (7) ◽  
pp. 1483 ◽  
Author(s):  
NL Arthur ◽  
M Lee

Hydrogen abstraction from (CH3),S and CH3COCH3 by CH3 radicals CH3+CH3SCH3 → CH4+CH3SCH2 CH3 + CH3COCH3 → CH4 + CH3COCH2 has been studied in the temperature range 120-245�. The rate constants, based on the value of 1013.34cm3 mol-l s-1 for the recombination of CH3 radicals, are given by (k in cm3 mol-1 s-1, E in kJ mol-1, R = 0.008314 kJ K-1 mol-1): logk1 = (11.62 � 0.08) ? (38.35 � 0.68)/2.303RT logk3 = (11.61 � 0.05) ? (40.48 � 0.46)/2.303RT Combination of the results for (1) with thermochemical data gives a calculated value of Logk-1 = (11.8 -63.7/2.303RT for the rate constant of the reverse reaction. The results for CH3+(CH3)2S are compared with all of the available data for hydrogen abstraction by free radicals from both sulphur-containing compounds, and molecules of the type (CH3)xM.



1955 ◽  
Vol 33 (3) ◽  
pp. 472-479 ◽  
Author(s):  
H. G. Oswin ◽  
R. Rebbert ◽  
E. W. R. Steacie

The reactions between CH3 + CH3—Hg—CH3 were investigated in a system in which acetone was used as the source of CH3 radicals. Similarly d6-acetone was used to investigate the reactions of CD3 radicals and CH3—Hg—CH3. Activation energies for the hydrogen abstraction reactions were calculated, and no significant difference was found between the CD3 and CH3 reactions, being respectively 10.0 and 10.2 kcal./mole. Under conditions of constant intensity and acetone concentration, reaction rates appear to be dependent on mercury dimethyl concentrations. In the case of the acetone-d6 system, quantities of C2D3H3 were found in the reaction products. This is discussed as possible evidence of such a reaction as:[Formula: see text]



1960 ◽  
Vol 38 (9) ◽  
pp. 1576-1589 ◽  
Author(s):  
P. J. Boddy ◽  
E. W. R. Steacie

The photolysis of 3-pentanone-d10 has been used as a source of deuterated ethyl radicals and some of their hydrogen abstraction reactions studied over the temperature range 50–300 °C.The compounds neopentane, n-butane, and isobutane were chosen as representative of the basic structural features in the alkane series. The activation energies for abstraction [Formula: see text] are respectively 12.60 ± 0.7, 10.4 ± 0.75, and 8.9 ± 0.6 kcal/mole and the pre-exponential factors (log10(A8/A4)) are 0.300 ± 0.09, 0.082 ± 0.09, and −0.334 ± 0.066 where[Formula: see text]For abstraction of a deuterium atom from the ketone the values obtained are [Formula: see text] in agreement with previous investigations (1, 2).The value of the disproportionation to combination ratio for C2D5 radicals is 0.0985 ± 0.008 independent of temperature.



Sign in / Sign up

Export Citation Format

Share Document