N.M.R. STUDIES OF BRIDGED RING SYSTEMS: II. UNUSUAL MAGNETIC DESHIELDING EFFECT ON THE BRIDGE METHYLENES OF NORBORNADIENE AND BENZONORBORNADIENE

1964 ◽  
Vol 42 (4) ◽  
pp. 926-933 ◽  
Author(s):  
K. Tori ◽  
Y. Hata ◽  
R. Muneyuki ◽  
Y. Takano ◽  
T. Tsuji ◽  
...  

Proton magnetic resonance spectra of some norbornane derivatives having double bonds and (or) a benzene ring in the skeleton were studied. Differences in the chemical shifts between the bridge methylenes of norbornene and benzonorbornene and that of norbornane result from the diamagnetic anisotropy effect of a double bond or a benzene ring being in good agreement with the values calculated theoretically. However, in the norbornadiene derivatives which have two double bonds or one olefinic double bond with a benzene ring in a part of the skeleton, the signals of their bridge methylenes show extraordinarily larger downfield shifts by about 0.8 p.p.m. than those expected from the additive shielding due to each π-electron system. This anomaly is not observed in bicyclo[2.2.2]octane ring series. A large transannular interaction between two π-electron systems in that system would be a major contribution to the above anomaly.

1967 ◽  
Vol 45 (11) ◽  
pp. 1185-1193 ◽  
Author(s):  
Naoki Inamoto ◽  
Shozo Masuda ◽  
Kazuo Tori ◽  
Katsutoshi Aono ◽  
Hiroshi Tanida

The substituent effects on the chemical shifts of the C9 bridge protons in a series of 6-substituted benzonorbornenes and benzonorbornadienes, and on those of the C2 protons in 5-substituted 2-indanols, were investigated. They were linearly correlated with the modified Hammett relationship τR − τH = ρ (σm + σp)/2. The ρ values obtained from the anti-C9 protons in the bornenes and bornadienes were slightly but significantly larger than those from the corresponding syn protons, whereas no significant difference was observed between the ρ values obtained from syn-9-benzonorbornenols and the indanols. The larger ρanti values were explained in terms of a stereospecific electronic interaction between the π-electron system of the benzene ring and the orbital system of the bridge carbon. In addition, it was shown that the above modified Hammett relationship gives generally a good agreement with the substituent effects on the aliphatic constituents of benzocyclenes and analogous compounds.


In the preceding paper of this series, refractive indices and molecular extinction coefficients over a wide range of wave-lengths were recorded for the two cyclic hydrocarbons cyclohexene and 1:3- cyclohexadiene . These observations completed a study of the refractive dispersions of the series of 6-ring compounds C 6 H 12 , C 6 H 10 , C 6 H 8 , C 6 H 6 ; they also provided a basis for the study of the phenomenon of "optical exaltation," which is exhibited by compounds containing conjugated double bonds, since the last two members of the series belong to this type. Conjugation, however, may be effected, not only between two olefinic double bonds, but also between an olefinic double bond and an oxygenated radical, such as the carboxyl, carbonyl, or hydroxyl group. The present paper, therefore, records the absorption spectra and refractive dispersions of three oxygenated derivated of cyclohexane, namely, cyclohexanol , cyclohexanone , and ethyl hexahydrobenzoate , in the molecules of which each of the preceding groups is exemplified. Dispersion curves are thus now available for typical compounds of the cyclohexane series containing "unsaturated" radicals of all the principal types which are used in constructing conjugated systems, and the way has been prepared for a detailed study of conjugation, as exemplified on the one hand by cyclo hexadiene, and similar compounds containing two olefinic radicals, and on the other hand by a variety of compounds containing a double bond in addition to a hydroxyl, carbonyl, or carboxyl group. It is anticipated that, with the help of the date set out in the preceding and present papers, it will be possible in a later communication to demonstrate in what respect the behaviour of conjugated compounds differs from that which might be anticipated from a merely additive behaviour of the chromophoric radicals, and thus to determine the nature, and if possible to discover the origin, of the phenomenon of optical exaltation.


1969 ◽  
Vol 91 (15) ◽  
pp. 4191-4194 ◽  
Author(s):  
Heinz W. Sternberg ◽  
Raymond E. Markby ◽  
Irving Wender ◽  
David M. Mohilner

One of the ultimate aims of the present investigations of refractive dispersion is to elucidate the phenomenon of “optical exaltation” in organic compounds containing conjugated systems of alternate single and double bonds, as observed by Gladstone in 1881 and defined by Brühl in 1907. A first step was taken in Part IV (Allsopp 1934 a ) when dispersion curves were plotted over a wide range of wave-lengths for two compounds of the cyclohexane series, viz. cyclohexene (I), which contains a single olefinic double bond, and cyclohexadiene (II), with two conjugated olefinic double bonds:


2018 ◽  
Vol 69 (1) ◽  
pp. 64-69
Author(s):  
Liviu Birzan ◽  
Mihaela Cristea ◽  
Constantin C. Draghici ◽  
Alexandru C. Razus

The 1H and 13C NMR spectra of several 2,6-diheteroarylvinyl heterocycles containing 4-azulenyl moiety were recorded and their proton and carbon chemical shifts were compared with those of the compounds without double bond between the heterocycles. The influence of the nature of central and side heterocycles, molecule polarization and anisotropic effects were revealed. The highest chemical shifts were recorded for the pyrylium salts and the lowest at pyridines, but in the case of the pyridinium salts, the protons chemical shifts at the central heterocycle are more shielded due to a peculiar anisotropy of the attached vinyl groups.


1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


1990 ◽  
Vol 55 (12) ◽  
pp. 2874-2879 ◽  
Author(s):  
Peter Ertl

Photoisomerization mechanism in model retinal-like protonated Schiff base pentadieniminium was investigated by using MNDO method with configuration interaction. Isomerizations around various double bonds were studied and twisted biradical geometries in S0 and S1 states were optimized. Photoisomerization proceeds exclusively around the central double bond where the twisted S1 state is strongly stabilized and the S0-S1 gap is minimal.


1990 ◽  
Vol 55 (8) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jan Schraml ◽  
Robert Brežný ◽  
Jan Čermák

29Si and 13C NMR spectra of five 4-substituted 2,6-dimethoxytrimethylsiloxybenzenes were studied with the aim to elucidate the nature of the deshielding proximity effects observed in the spectra of ortho substituted trimethylsiloxybenzenes. The sensitivity of 29Si chemical shifts to para substitution is in the studied compounds essentially the same as in mono ortho methoxytrimethylsiloxybenzenes. The deshielding proximity effect of the ìsecondî methoxy group is somewhat smaller than that of the ìfirstî group. The present results indicate that the two methoxy groups assume coplanar conformations with the benzene ring and are turned away from the trimethylsiloxy group which is not in the benzene plane. It is argued that in mono ortho methoxytrimethylsiloxybenzenes the two substituent groups adopt the same conformations as in the compounds studied here.


2014 ◽  
Vol 70 (9) ◽  
pp. o1051-o1052 ◽  
Author(s):  
Ignez Caracelli ◽  
Stella H. Maganhi ◽  
Paulo J. S. Moran ◽  
Bruno R. S. de Paula ◽  
Felix N. Delling ◽  
...  

In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] isE, with the ketone moiety almost coplanar [C—C—C—C torsion angle = 9.5 (2)°] along with the phenyl ring [C—C—C—C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O—N—C—C = 4.2 (2)°], whereas the one in theorthoposition is twisted [O—N—C—C = 138.28 (13)°]. The molecules associateviaC—H...O interactions, involving both O atoms from the 2-nitro group, to form a helical supramolecular chain along [010]. Nitro–nitro N...O interactions [2.8461 (19) Å] connect the chains into layers that stack along [001].


1970 ◽  
Vol 23 (4) ◽  
pp. 813 ◽  
Author(s):  
AJ Birch ◽  
B McKague

An aspect of the synthesis of sterically defined trisubstituted double bonds is discussed. Metal-ammonia reductions of hydropyridinium salts such as (1 ; R, R' = H or Me) result in allylic fissions, with a considerable proportion of double bond retention in its original situation and complete retention of the original steric configuration in that position.


Sign in / Sign up

Export Citation Format

Share Document