ABSOLUTE RATE CONSTANTS FOR HYDROCARBON AUTOXIDATION: III. α-METHYLSTYRENE, β-METHYLSTYRENE, AND INDENE
Absolute rate constants for the copolymerization of α-methylstyrene and oxygen have been measured from 13 to 50 °C. The propagation and termination rate constants can be represented by[Formula: see text]Experiments with 2,6-di-t-butyl-4-methylphenol at 65 °C have shown that C6H5C(CH3):CH2 and C6H5C(CD3):CD2 have the same propagation rate constant but that chain termination involves a deuterium isotope effect (kt)H/(kt)D ≈ 1.5.Absolute rate constants for the copolymerization of oxygen with β-methylstyrene and with indene at 30 °C showed that a significant fraction of the oxidation chains were terminated by a kinetically first order process (rate constant kx). The rate constants for β-methylstyrene and indene at 30 °C are kp = 51 and 142 l mole−1 s−1, kt = 1.6 × 107 and 2.5 × 107 l mole−1 s−1, and kx = 0.61 and 1.2 s−1, respectively. The propagation rate constant for indene can be separated into a rate constant for the copolymerization with oxygen (kadd = 128 l mole−1 s−1) and a rate constant for hydrogen atom abstraction (kabstr = 14 l mole−1 s−1). In the presence of heavy water the first order process for indene had a deuterium isotope effect (kx)/(kx)D2O ≈ 3.