N-Chlorination of secondary amides. II. Effects of substituents on rates of N-chlorination

1969 ◽  
Vol 47 (18) ◽  
pp. 3289-3297 ◽  
Author(s):  
E. W. C. W. Thomm ◽  
M. Wayman

Various secondary amides have been N-chlorinated, at high and at low pH. The reactivity of the chlorinating reagents with all the amides investigated was found to have the sequence[Formula: see text]The substituent groups R1 and R2 of the amide [Formula: see text] were found to have large effects on the rate of chlorination. With the three molecular chlorinating agents, the reactivity of the amides was found to be in the order[Formula: see text]With hypochlorite ion the reverse order of reactivity was observed. These results are discussed and reaction mechanisms proposed. It is proposed that, when a hypochlorite ion is a chlorinating agent, the primary reaction is hydrogen bond formation between the amido hydrogen and the hypochlorite oxygen atom, but that the donation of electrons from the amido N to the Cl atom is the primary reaction with the molecular chlorinating agents.


1970 ◽  
Vol 48 (14) ◽  
pp. 2197-2203 ◽  
Author(s):  
A. Foldes ◽  
C. Sandorfy

The influence of solvent effects and hydrogen bond formation on the anharmonicity of the NH stretching vibration of simple secondary amides, lactams, anilides, indole, pyrrole, and imidazole have been studied; and the frequencies of the first and second overtones, their half widths and solvent shifts measured. The validity of Buckingham's theory is established in the case of inert solvents; whereas the second order perturbation treatments are shown to be inapplicable to the case of hydrogen bonding solvents. All NH stretching modes seem to exhibit the same anharmonic behavior which is very different from that of OH vibrations.



1973 ◽  
Vol 51 (21) ◽  
pp. 3640-3646 ◽  
Author(s):  
Marie-Claude Bernard-Houplain ◽  
C. Sandorfy

The infrared spectra of N-methylacetamide and two other secondary amides were measured in solution at temperatures ranging from 22 to −190 °C in both the fundamental and the overtone regions. At least two hydrogen bonded species are found as association increases with decreasing temperature. The effect of hydrogen bond formation on the anharmonicity of the NH stretching vibration and on the NH stretching – NH bending coupling constant is examined.



2020 ◽  
Vol 8 (42) ◽  
pp. 14939-14947
Author(s):  
So Yokomori ◽  
Shun Dekura ◽  
Tomoko Fujino ◽  
Mitsuaki Kawamura ◽  
Taisuke Ozaki ◽  
...  

A novel vapochromic mechanism by intermolecular electron transfer coupled with hydrogen-bond formation was realized in a zinc dithiolene complex crystal.



1982 ◽  
Vol 104 (2) ◽  
pp. 619-621 ◽  
Author(s):  
Mario J. Nappa ◽  
Roberto Santi ◽  
Steven P. Diefenbach ◽  
Jack Halpern


2010 ◽  
Vol 88 (8) ◽  
pp. 849-857 ◽  
Author(s):  
Nguyen Tien Trung ◽  
Tran Thanh Hue ◽  
Minh Tho Nguyen

The hydrogen-bonded interactions in the simple (HNZ)2 dimers, with Z = O and S, were investigated using quantum chemical calculations with the second-order Møller–Plesset perturbation (MP2), coupled-cluster with single, double (CCSD), and triple excitations (CCSD(T)) methods in conjunction with the 6-311++G(2d,2p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets. Six-membered cyclic structures were found to be stable complexes for the dimers (HNO)2, (HNS)2, and (HNO–HNS). The pair (HNS)2 has the largest complexation energy (–11 kJ/mol), and (HNO)2 the smallest one (–9 kJ/mol). A bond length contraction and a frequency blue shift of the N–H bond simultaneously occur upon hydrogen bond formation of the N–H···S type, which has rarely been observed before. The stronger the intramolecular hyperconjugation and the lower the polarization of the X–H bond involved as proton donor in the hydrogen bond, the more predominant is the formation of a blue-shifting hydrogen bond.



Science ◽  
1982 ◽  
Vol 215 (4533) ◽  
pp. 695-696 ◽  
Author(s):  
J. P. GLUSKER ◽  
D. E. ZACHARIAS ◽  
D. L. WHALEN ◽  
S. FRIEDMAN ◽  
T. M. POHL


2004 ◽  
Vol 108 (19) ◽  
pp. 4357-4364 ◽  
Author(s):  
Attila Demeter ◽  
László Ravasz ◽  
Tibor Bérces


Synthesis ◽  
2021 ◽  
Author(s):  
Shinji Tanaka ◽  
Shoutaro Iwase ◽  
Sena Kanda ◽  
Marie Kato ◽  
Yutaro Kiriyama ◽  
...  

The asymmetric dehydrative intramolecular allylation reactions of furan and thiophene were performed using a cationic cyclopentadienyl-ruthenium (CpRu) complex of a chiral pyridine carboxylic acid, namely Cl-Naph-PyCOOH. Both furan and thiophene tethered with an allylic alcohol gave the corresponding bicyclic compounds in high yields and enantioselectivities using 0.1–5 mol% of catalyst. The reaction was found to proceed via a similar enantioface selection method mechanism to that previously reported by our group, which involved halogen and hydrogen bond formation, in addition to the generation of an intermediate σ-allyl complex.



Sign in / Sign up

Export Citation Format

Share Document