Mass spectral studies of metal chelates. V. Mass spectra and appearance potentials of some fluorine-substituted acetylacetonates

1970 ◽  
Vol 48 (9) ◽  
pp. 1362-1370 ◽  
Author(s):  
C. Reichert ◽  
G. M. Bancroft ◽  
J. B. Westmore

The mass spectra of the hexafluoroacetylacetonates (hfacac) and trifluoroacetylacetonates (tfacac) of Al(III), Cr(III), Fe(III), Fe(II), Cu(II), and Zn(II) are reported. The main features of the spectra are discussed. Compared with the spectra of the acetylacetonates (acac), substitution of CF3 for CH3 in these complexes leads to more extensive fragmentation of the molecular ions. For example, ions corresponding to loss of •CF3 radicals are more abundant than those corresponding to loss of •CH3 radicals. The appearance potentials (a.p.'s) of the molecular ions and, where possible, of fragment ions formed from the molecular ion by loss of •CF3, •CH3, or ligand radicals are reported. The a.p.'s of the molecular ions are more sensitive to the nature of the ligand than to the metal. Thus, for the metal chelates studied here the a.p.'s of the molecular ions from ML2 and ML3 (L stands for ligand) were 9.95 ± 0.25 V for L = hfacac, 9.05 ± 0.35 V for L = tfacac, and 8.3 ± 0.35 V for L = acac. The energy required to dissociate a •CF3 or •CH3 radical from the molecular ion is sensitive to the nature and valency of the metal M, being low (relatively) for Al(III) and Fe(III), and high (relatively) for Cr(III) (inferred) and Fe(II). This variation is discussed in terms of the effect of substituent, and of interaction of metal d orbitals with the ligands.


1982 ◽  
Vol 35 (7) ◽  
pp. 1365 ◽  
Author(s):  
A Benedetti ◽  
C Preti ◽  
L Tassi ◽  
G Tosi

Substituted benzeneseleninic acids of the type XC6H4SeO2H (X = m-Cl, p-Cl, m-Br, p-Br, p-Me, m-NO2, p-NO2) have been investigated by mass spectrometry. The fragmentation modes and the fragment ions are discussed and compared with those obtained from the mass spectrum of m-nitro-phenyl selenocyanate, O2NC6H4SeCN. Generally, as regards the acids, besides very weak peaks due to the molecular ions, a number of peaks at higher mass numbers and of greater intensity is observed; these peaks are in multiplets typical of the presence of two selenium atoms, and they correspond to the disubstituted diphenyl diselenides of the type XC6H4SeSeC6H4X. m-Nitrophenyl selenocyanate shows an intense molecular ion peak and the relative fragmentation, while the peak due to the diselenide is of very low intensity.



1973 ◽  
Vol 51 (17) ◽  
pp. 2999-3005 ◽  
Author(s):  
Denis C. K. Lin ◽  
John B. Westmore

The thermal decomposition of twenty-five cupric carboxylates was studied by mass spectrometry. In eleven cases volatile cuprous carboxylates (many of which have not been previously reported) were detected amongst the decomposition products. The cuprous carboxylates from acetic, propionic, n-butyric, isobutyric, difluoroacetic, trifluoroacetic, benzoic, p-fluorobenzoic, p-chlorobenzoic, o-chlorobenzoic, and pentafluorobenzoic acids were all found to be dimeric in the vapor phase. Two basically different fragmentation pathways can be proposed depending upon whether the copper salt is formed from an alkyl- or aryl-carboxylic acid. For the former, the spectra are dominated by even-electron fragment ions formed by initial loss of RCO2•from the molecular ion. For the latter, a parallel fragmentation pathway initiated by loss of CO2 from the molecular ion and migration of the aryl group to the metal is also present.



1968 ◽  
Vol 46 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Peter Yates ◽  
Thomas R. Lynch ◽  
L. S. Weiler

The mass spectra of three desaurins and four related 3,5-bismethylene-1,2,4-trithiolanes have been interpreted with the aid of metastable peak assignments and accurate mass measurements. Strong molecular ion peaks are observed in the case of the aryl desaurins but not in that of their trithiolane counterparts. A variety of fragmentation pathways are postulated for the molecular ions, including cleavage on either side of a carbonyl group and elimination of a molecule of acylthioketene. In the case of the desaurins the latter process results in the formation of acylthioketene molecular ions, which could be distinguished from the doubly charged desaurin molecular ions. In the case of two of the trithiolanes, it is proposed that the ions resulting from loss of acylthioketene from the molecular ions undergo a novel type of McLafferty rearrangement and loss of carbon suboxysulfide to give aryl mercaptan molecular ions.





2009 ◽  
Vol 15 (4) ◽  
pp. 497-506 ◽  
Author(s):  
Tomasz Pospieszny ◽  
Elżbieta Wyrzykiewicz

Electron ionisation (EI) and fast atom bombardment (FAB) mass spectral fragmentations of nine 2,4-(and 2,1-) disubstituted o-( m- and p-)nitro-(chloro- and bromo-)-2-thiocytosinium halides are investigated. Fragmentation pathways, whose elucidation is assisted by accurate mass measurements and metastable transitions [EI-mass spectrometry (MS)], as well as FAB/collision-induced dissociation (CID) mass spectra measurements are discussed. The correlations between the abundances of the (C11H10N4SO2)+1–3; (C11H10N3SCl)+4–6 and (C11H10N3SBr)+7–9 ions and the selected fragment ions (EI-MS), as well as (C18H16N5SO4)+1–3; (C18H16N3SCl2)+4–6 and (C18H16N3SBr2) + 7–9 ions and the selected ions (C7H6NO2)+1–3; (C7H6Cl)+ 4–6; (C7H6Br)+ 7–9 (FAB-MS) are discussed. The data obtained can be used for distinguishing isomers.



2021 ◽  
pp. 1-5
Author(s):  
Osarumwense Peter Osarodion ◽  
◽  
Omotade Treasure Ejodamen ◽  

Looking at the previous studies on quinazolinones derivatives, only limited information’s are available on their mass spectral along with the preparation of novel quinazolin-4-(3H)-one derivatives The condensation of Methyl-2-amino-4-Chlorobenzoate with acetic anhydride yielded the cyclic compound 2-methyl 7-Chloro-1, 3-benzo-oxazine-4-one (1) which further produce 3-Amino-2-Methyl 7-Chloro quinazolin-4(3H)-ones (2) via the reaction with hydrazine hydrate. The compounds synthesized were unequivocally confirmed by means of Infrared, Nuclear Magnetic Resonance (1H and 13C), Gas Chromatography-Mass spectrophotometry and Elemental analysis. Discussion: The molecular ion of m/z 235 fragments to give m/z 220 by loss of –NH group. The ion of m/z 220 was broken to give m/z 206 by losing CH2 group and fragment to m/z 177 by loss of HCO. This fragmented to m/z 162 by loss of –CH3 group and then m/z 136 by loss of CN group. The loss of O gave m/z 120 which fragment to give m/z 93 by loss of –HCN and finally gave m/z 65 by loss of CO group. Conclusion: The electron impact ionization mass spectra of compound 2show a weak molecular ion peak and a base peak of m/z 235resulting from a cleavage fragmentation. Compound 2 give a characteristic fragmentation pattern. From the study of the mass spectra of compound 2, it was found that the molecular ion had fragmented to the m/z 220. The final fragmentation led to ion of m/z 93 and ion of mass m/z 65, respectively



1977 ◽  
Vol 32 (10) ◽  
pp. 1156-1159 ◽  
Author(s):  
Neil G. Keats ◽  
Jean E. Rockley ◽  
Lindsay A. Summers

The base peaks in the mass spectra of Ν,N′-diphenylformamidine, N,N′-di-(4-chlorophenyl)formamidine and N,N′-di-(3-chlorophenyl)formamidine are due to the molecular ions of aniline, 4-chloroaniline and 3-chloroaniline respectively. The species responsible for the base peaks are thought to be formed by rupture of the CH-NH bond with concomitant hydrogen migration.



Sign in / Sign up

Export Citation Format

Share Document