Isolation of ergovaline, ergoptine, and ergonine, new alkaloids of the peptide type, from ergot sclerotia

1979 ◽  
Vol 57 (13) ◽  
pp. 1638-1641 ◽  
Author(s):  
Rudolf Brunner ◽  
Peter Leopold Stütz ◽  
Hans Tscherter ◽  
Paul Albert Stadler

The isolation of three new ergot alkaloids of the peptide type from sclerotia of Clavicepspurpurea and from mother liquors of rye ergot alkaloid extraction processes is described. The constitution of the new alkaloids ergovaline, ergoptine, and ergonine has been established by comparison with compounds previously obtained by total synthesis.

2018 ◽  
Vol 98 (4) ◽  
pp. 688-700 ◽  
Author(s):  
T. Grusie ◽  
V. Cowan ◽  
J. Singh ◽  
J. McKinnon ◽  
B. Blakley

Cows were fed ration for 9 wk containing 5, 48, 201, and 822 μg kg−1 ergot alkaloids. The objective was to evaluate the impact of ergot consumption in beef cow–calf operations. Ergot alkaloids up to 822 μg kg−1 did not alter the weight of peripartum and postpartum beef cows (P = 0.93) or nursing calves (P = 0.08), rectal temperature (P = 0.16), or plasma prolactin concentrations (P = 0.30) at moderate ambient temperatures. Ergot did not influence the time (>1 ng mL−1; P = 0.79) or the progesterone concentration (P = 0.38) at the time of first postpartum rise or the size of the first (14 ± 0.6 mm; P = 0.40) and second (13 ± 0.5 mm; P = 0.41) follicles to ovulate. The maximum size of the first postpartum corpus luteum (CL) was 4 mm larger in the 822 μg kg−1 ergot group compared with the control (P = 0.03) for the first ovulation post partum, but not for the second (P = 0.11). There was no effect of ergot exposure on the number of days until the appearance of the first (43 ± 4 d; P = 0.95) or second (52 ± 4 d; P = 0.98) CL post partum. Ergot alkaloid concentrations up to 822 μg kg−1 did not affect pregnancy rates (X2 = 0.36). In conclusion, ergot alkaloid exposure for 9 wk to concentrations as high as 822 μg kg−1 did not alter performance in pregnant and postpartum beef cattle at moderate ambient temperatures.


1981 ◽  
Vol 10 (5) ◽  
pp. 615-618 ◽  
Author(s):  
Masanori Somei ◽  
Fumio Yamada ◽  
Yoshio Karasawa ◽  
Chikara Kaneko

ChemInform ◽  
1990 ◽  
Vol 21 (27) ◽  
Author(s):  
I. NINOMIYA ◽  
C. HASHIMOTO ◽  
T. KIGUCHI ◽  
T. NAITO ◽  
D. H. R. BARTON ◽  
...  

Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 9
Author(s):  
Eriton E. L. Valente ◽  
David L. Harmon ◽  
James L. Klotz

Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate the effects of 24 h exposure to 5-HT and ergot alkaloids (ergovaline, ERV), two assays were conducted. The first assay determined the half-maximal inhibitory concentration (IC50) following the 24 h pre-exposure period, while the second assay evaluated the effect of IC50 concentrations of 5-HT and ERV either individually or in combination. There was an interaction between previous exposure to 5-HT and ERV. Previous exposure to 5-HT at the IC50 concentration of 7.57 × 10−7 M reduced the contractile response by more than 50% of control, while the exposure to ERV at IC50 dose of 1.57 × 10−10 M tended to decrease (p = 0.081) vessel contractility with a response higher than 50% of control. The 24 h previous exposure to both 5-HT and ERV did not potentiate the inhibitory response of blood vessels in comparison with incubation with each compound alone. These results suggest receptor competition between 5-HT and ERV. More studies are necessary to determine the potential of 5-HT to treat toxicosis caused by ergot alkaloids.


Author(s):  
Ichiya Ninomiya ◽  
Chiyomi Hashimoto ◽  
Toshiko Kiguchi ◽  
Takeaki Naito ◽  
Derek H. R. Barton ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
J. L. Britt ◽  
R. E. Noorai ◽  
S. K. Duckett

Abstract Background Ergot alkaloids (E+) are mycotoxins produced by the endophytic fungus, Epichloë coenophiala, in tall fescue that are associated with ergotism in animals. Exposure to ergot alkaloids during gestation reduces fetal weight and placental mass in sheep. These reductions are related to vasoconstrictive effects of ergot alkaloids and potential alterations in nutrient transport to the fetus. Cotyledon samples were obtained from eight ewes that were fed E+ (n = 4; E+/E+) or E- (endophyte-free without ergot alkaloids; n = 4; E−/E-) seed during both mid (d 35 to 85) and late (d 85–133) gestation to assess differentially expressed genes associated with ergot alkaloid induced reductions in placental mass and fetal weight, and discover potential adaptive mechanisms to alter nutrient supply to fetus. Results Ewes fed E+/E+ fescue seed during both mid and late gestation had 20% reduction in fetal body weight and 33% reduction in cotyledon mass compared to controls (E−/E-). Over 13,000 genes were identified with 110 upregulated and 33 downregulated. Four genes had a |log2FC| > 5 for ewes consuming E+/E+ treatment compared to controls: LECT2, SLC22A9, APOC3, and MBL2. REViGO revealed clusters of upregulated genes associated glucose, carbohydrates, lipid, protein, macromolecular and cellular metabolism, regulation of wound healing and response to starvation. For downregulated genes, no clusters were present, but all enriched GO terms were associated with anion and monocarboxylic acid transport. The complement and coagulation cascade and the peroxisome proliferator-activated receptor signaling pathway were found to be enriched for ewes consuming E+/E+ treatment. Conclusions Consumption of ergot alkaloids during gestation altered the cotyledonary transcriptome specifically related to macronutrient metabolism, wound healing and starvation. These results show that ergot alkaloid exposure upregulates genes involved in nutrient metabolism to supply the fetus with additional substrates in attempts to rescue fetal growth.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Caroline E. Leadmon ◽  
Jessi K. Sampson ◽  
Matthew D. Maust ◽  
Angie M. Macias ◽  
Stephen A. Rehner ◽  
...  

ABSTRACT Genomic sequence data indicate that certain fungi in the genus Metarhizium have the capacity to produce lysergic acid-derived ergot alkaloids, but accumulation of ergot alkaloids in these fungi has not been demonstrated previously. We assayed several Metarhizium species grown under different conditions for accumulation of ergot alkaloids. Isolates of M. brunneum and M. anisopliae accumulated the lysergic acid amides lysergic acid α-hydroxyethyl amide, ergine, and ergonovine on sucrose-yeast extract agar but not on two other tested media. Isolates of six other Metarhizium species did not accumulate ergot alkaloids on sucrose-yeast extract agar. Conidia of M. brunneum lacked detectable ergot alkaloids, and mycelia of this fungus secreted over 80% of their ergot alkaloid yield into the culture medium. Isolates of M. brunneum, M. flavoviride, M. robertsii, M. acridum, and M. anisopliae produced high concentrations of ergot alkaloids in infected larvae of the model insect Galleria mellonella, but larvae infected with M. pingshaense, M. album, M. majus, and M. guizhouense lacked detectable ergot alkaloids. Alkaloid concentrations were significantly higher when insects were alive (as opposed to killed by freezing or gas) at the time of inoculation with M. brunneum. Roots of corn and beans were inoculated with M. brunneum or M. flavoviride and global metabolomic analyses indicated that the inoculated roots were colonized, though no ergot alkaloids were detected. The data demonstrate that several Metarhizium species produce ergot alkaloids of the lysergic acid amide class and that production of ergot alkaloids is tightly regulated and associated with insect colonization. IMPORTANCE Our discovery of ergot alkaloids in fungi of the genus Metarhizium has agricultural and pharmaceutical implications. Ergot alkaloids produced by other fungi in the family Clavicipitaceae accumulate in forage grasses or grain crops; in this context they are considered toxins, though their presence also may deter or kill insect pests. Our data report ergot alkaloids in Metarhizium species and indicate a close association of ergot alkaloid accumulation with insect colonization. The lack of accumulation of alkaloids in spores of the fungi and in plants colonized by the fungi affirms the safety of using Metarhizium species as biocontrol agents. Ergot alkaloids produced by other fungi have been exploited to produce powerful pharmaceuticals. The class of ergot alkaloids discovered in Metarhizium species (lysergic acid amides) and their secretion into the growth medium make Metarhizium species a potential platform for future studies on ergot alkaloid synthesis and modification.


1985 ◽  
Vol 26 (35) ◽  
pp. 4187-4190 ◽  
Author(s):  
Ichiya Ninomiya ◽  
Chiyomi Hashimoto ◽  
Toshiko Kiguchi ◽  
Derek H.R. Barton ◽  
Xavier Lusinchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document