Isotope effects in the diphenylpicrylhydrazyl-inhibited thermal polymerization of 2,6-dideuteriostyrene

1981 ◽  
Vol 59 (21) ◽  
pp. 3090-3094 ◽  
Author(s):  
Karl R. Kopecky ◽  
Michael C. Hall

There is an inverse isotope effect in the reaction between 2,2-diphenyl-1-picrylhydrazyl DPPH and 2,6-dideuteriostyrene of 0.75 ± 0.07 at 75 °C in degassed neat styrene. This result is consistent with the proposal that the reaction involves hydrogen transfer to DPPH from a Diels–Alder dimer of styrene. The rate constant for dimerization of styrene to this dimer is calculated to be 1.8 × 10−10 L mol−1 s−1 at 75 °C.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.


1969 ◽  
Vol 47 (21) ◽  
pp. 4049-4058 ◽  
Author(s):  
Karl R. Kopecky ◽  
Syamalarao Evani

A convenient synthesis of 2,6-dideuteriostyrene starts with N,N-dimethyl-(1-phenylethyl)-amine which is deuterated in the 2 and 6 positions by a series of exchanges using n-butyllithium followed by deuterium oxide. The deuterium isotope effects at 70° on the rates of the thermal polymerization, [Formula: see text], of 2,6-dideuterio-, α-deuterio-, and β,β-dideuteriostyrene are 1.29, 1.00, and 0.78, respectively. The deuterium isotope effects at 70° on the 2,2′-azobis-(2-methylpropionitrile) initiated rates of polymerization,[Formula: see text], are 0.96, 0.86, and 0.81, respectively. From these values the deuterium isotope effects on the rates of initiation of the thermal polymerization, k1H/k1D, are calculated to be 1.80, 1.31, and 0.92, respectively. At 147° the presence of 1.5% potassium t-butoxide decreases the rate of the thermal polymerization of neat styrene by a factor of 17, and results in the formation of 1-phenyltetralin as the greatly predominant dimer. The results support the suggestion that the thermal polymerization of styrene is initiated by hydrogen transfer from 1-phenyl-1,2,3,9-tetrahydronaphthalene, formed by a concerted dimerization of two molecules of styrene, to a third molecule of styrene.


2001 ◽  
Vol 79 (12) ◽  
pp. 1887-1897
Author(s):  
Thuy Van Pham ◽  
Robert A McClelland

Transition-state structures for the carbocation–nucleophile combination reactions of (4-substituted-4'- methoxydiphenyl)methyl cations with water, chloride, and bromide ions in acetonitrile–water mixtures have been investigated by measuring the secondary α-deuterium kinetic and equilibrium isotope effects. Rate constants in the combination direction were measured with laser flash photolysis. Equilibrium constants were measured for the water reaction by a comparison method in moderately concentrated sulfuric acid solutions, for the bromide reaction via the observation of reversible combination, and for the chloride reaction from the ratio of the combination rate constant and the rate constant for the ionization of the diarylmethyl chloride product. The fraction of bond making in the transition state has been calculated as the ratio log (kinetic isotope effect):log (equilibrium isotope effect). For the water reaction, there is 50–65% bond making in the transition state; this is also true for cations that are many orders of magnitude less reactive. The same conclusions, 50–65% bond formation in the transition state independent of reactivity, have previously been made in correlations of log kw vs. log KR. Thus, two quite different measures of transition structure provide the same result. The kH:kD values for the halide combinations in 100% acetonitrile are within experimental error of unity. This is consistent with suggestions that these reactions are occurring with diffusional encounter as the rate-limiting step. Addition of water has a dramatic retarding effect on the halide reactions, with rate constants decreasing steadily with increased water content. Small inverse kinetic isotope effects are observed (in 20% acetonitrile:80% water) indicating that carbon—halogen bond formation is rate-limiting. Comparison of the kinetic and equilibrium isotope effects shows ~25 and ~40% bond formation in the transition states for the reactions with bromide and chloride, respectively.Key words: carbocation, isotope effect, transition state, halide.


1988 ◽  
Vol 252 (3) ◽  
pp. 913-915 ◽  
Author(s):  
E Melzer ◽  
H L Schmidt

The isotope effect at C-1 on the H2O2-catalysed decarboxylation of pyruvate (used as a model reaction for the enzymic reaction) increases between pH 3 and 10 from 1.0007 +/- 0.0004 to 1.0283 +/- 0.0014 (25 degrees C). This result indicates a change in the rate-determining step from formation of the tetrahedral intermediate to decarboxylation of this intermediate. Practically no isotope fractionation at C-1 (1.0011 +/- 0.0002, pH 6.0, 25 degrees C) is found in the lactate oxidase-catalysed decarboxylation of lactate, which is indicative for the existence of an irreversible O2-dependent step prior to the enzyme-catalysed decarboxylation. In addition, the result provides further evidence that dissociation of pyruvate and H2O2 from the enzyme can be excluded. The isotope effect at C-2 of lactate in the enzymic reaction (1.0048 +/- 0.0004) is attributed to the hydrogen transfer step from lactate to the coenzyme.


1960 ◽  
Vol 38 (2) ◽  
pp. 222-232 ◽  
Author(s):  
J. A. Llewellyn ◽  
R. E. Robertson ◽  
J. M. W. Scott

The α-deuterium isotope effect has been examined for the solvolysis of a series of esters containing a fully deuterated methyl group. The possible sources of the effect have been divided into "thermodynamic" effects which appear to favor more rapid reaction of the protium compound and "zero point" effects where stiffening of out-of-plane vibrations may account for the direction of the observed isotope effects. It appears that the inverse isotope effect may be a measure of the spatial restrictions placed on the hydrogen atoms on the carbon atom in the activated complex.


1962 ◽  
Vol 40 (8) ◽  
pp. 1533-1539 ◽  
Author(s):  
Arthur T. Blades ◽  
P. W. Gilderson ◽  
M. G. H. Wallbridge

The relative rate constant expression has been obtained for the decomposition of ethyl-1,1,2,2-d4 bromide under inhibiting conditions in the temperature range 697.6 to 999.1 °K,[Formula: see text]The pressure dependence of the isotope effect has been investigated both with and without inhibitor, and in each case it has been shown that the isotope effect increases with decreasing pressure.The relative rate constant expression for the ethyl-h5, ethyl-d5 bromide comparison was also obtained in the temperature range 730.9 to 964.8 °K,[Formula: see text]The isotope effect is again pressure dependent, falling to lower values as the pressure is decreased.The data are used to demonstrate that the inhibited decomposition of ethyl bromide is primarily a molecular process, and that the rate-controlling step involves a carbon–hydrogen bond break.A side reaction that produces small amounts of ethane has been observed.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Fu-sui Liu

This paper is the first to demonstrate that a pure nonphonon mechanism can quantitatively explain all isotope effect experiments in YBaCuO (YBCO) and to conclude that the influence of zero-point oscillation on the two local spin-mediated interaction (TLSMI) causes the isotope effects in YBCO. This paper is the first to calculate the doping dependence of exponents of oxygen isotope effect for all quantities of YBCO, such as , T, pseudogap at , gap at 0 K, and number density of supercurrent carriers at 0 K. This paper points out that the observed inverse isotope effect of comes also from zero-point oscillation.


1991 ◽  
Vol 275 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Y K Li ◽  
J Boggaram ◽  
L D Byers

Two new alkylating reagents, chloro- and bromo-acetylphosphonate, were found to be very effective thiol-blocking reagents. The pH-dependence of the reaction of BAP with 2,4-dinitrothiophenol (25 degrees C, I 0.5) shows a tailing bell-shaped curve (with a plateau at high pH) characteristic of two ionizing groups: the thiol group (pKa 3.2) and the phosphonate group (pKa2 4.6). The rate constant for the reaction of the monoanionic inhibitor with dinitrothiophenolate (k2 = 7 M-1.s-1) is 120 times larger than that of the dianionic species. The haloacetylphosphonates were found to be irreversible inhibitors of glyceraldehyde-3-phosphate dehydrogenase from a variety of sources. They react with the active-site thiol group (Cys-149) and are half-site reagents with yeast glyceraldehyde-3-phosphate dehydrogenase. Thus, when two of the identical four subunits are modified the enzyme is catalytically inactive. The effects of pH (7-10), 2H2O and NAD+ on the reaction with the yeast enzyme were examined in detail. NAD+ enhances the alkylation rates. The second-order rate constant does not show a simple sigmoidal dependence on pH but rather a tailing bell-shaped curve (pKa 7.0 and 8.4) qualitatively similar to that obtained with dinitrothiophenol. There is no significant solvent isotope effect on the limiting rate constants and a normal isotope effect on the two pKa values. The results are consistent with the more reactive enzyme species containing a thiolate and an acidic group that may either donate a proton to the dianionic haloacetylphosphonate or orient the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document