scholarly journals Theory of Isotope Effect in YBaCuO

2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Fu-sui Liu

This paper is the first to demonstrate that a pure nonphonon mechanism can quantitatively explain all isotope effect experiments in YBaCuO (YBCO) and to conclude that the influence of zero-point oscillation on the two local spin-mediated interaction (TLSMI) causes the isotope effects in YBCO. This paper is the first to calculate the doping dependence of exponents of oxygen isotope effect for all quantities of YBCO, such as , T, pseudogap at , gap at 0 K, and number density of supercurrent carriers at 0 K. This paper points out that the observed inverse isotope effect of comes also from zero-point oscillation.

1960 ◽  
Vol 38 (2) ◽  
pp. 222-232 ◽  
Author(s):  
J. A. Llewellyn ◽  
R. E. Robertson ◽  
J. M. W. Scott

The α-deuterium isotope effect has been examined for the solvolysis of a series of esters containing a fully deuterated methyl group. The possible sources of the effect have been divided into "thermodynamic" effects which appear to favor more rapid reaction of the protium compound and "zero point" effects where stiffening of out-of-plane vibrations may account for the direction of the observed isotope effects. It appears that the inverse isotope effect may be a measure of the spatial restrictions placed on the hydrogen atoms on the carbon atom in the activated complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.


2016 ◽  
Vol 13 (4) ◽  
pp. 1129-1144 ◽  
Author(s):  
Dominika Lewicka-Szczebak ◽  
Jens Dyckmans ◽  
Jan Kaiser ◽  
Alina Marca ◽  
Jürgen Augustin ◽  
...  

Abstract. The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by soil denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. In our soil incubation experiments Δ17O isotope tracing was applied for the first time to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found that N2O formation in static anoxic incubation experiments was typically associated with oxygen isotope exchange close to 100 % and a stable difference between the 18O ∕ 16O ratio of soil water and the N2O product of δ18O(N2O ∕ H2O)  =  (17.5 ± 1.2) ‰. However, flow-through experiments gave lower oxygen isotope exchange down to 56 % and a higher δ18O(N2O ∕ H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O ∕ H2O) showed a significant correlation (R2 = 0.70, p <  0.00001). We hypothesize that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification, isotope exchange occurs prior to isotope branching and that this exchange is mostly associated with the enzymatic nitrite reduction mediated by NIR. For bacterial denitrification, the branching isotope effect can be surprisingly low, about (0.0 ± 0.9) ‰, in contrast to fungal denitrification where higher values of up to 30 ‰ have been reported previously. This suggests that δ18O might be used as a tracer for differentiation between bacterial and fungal denitrification, due to their different magnitudes of branching isotope effects.


2007 ◽  
Vol 34 (11) ◽  
pp. 1049 ◽  
Author(s):  
Guillaume Tcherkez ◽  
Graham D. Farquhar

While photosynthetically evolved O2 has been repeatedly shown to have nearly the same oxygen isotope composition as source water so that there is no corresponding 16O/18O isotope effect, some recent 18O-enrichment studies suggest that a large isotope effect may occur, thus feeding a debate in the literature. Here, the classical theory of isotope effects was applied to show that a very small isotope effect is indeed expected during O2 production. Explanations of the conflicting results are briefly discussed.


1961 ◽  
Vol 39 (10) ◽  
pp. 1989-1994 ◽  
Author(s):  
K. T. Leffek ◽  
R. E. Robertson ◽  
S. E. Sugamori

The secondary β-deuterium isotope effect (kH/kD) has been measured over a range of temperature for the water solvolysis reactions of isopropyl methanesulphonate, p-toluenesulphonate, and bromide. In these cases the isotope effect is due to a difference in entropies of activation of the isotopic analogues rather than a difference in the enthalpies of activation. It is suggested that the observed isotope effect is due to internal rotational effects of the methyl groups in the isopropyl radical, and the lack of an isotope effect on the enthalpy of activation is accounted for by a cancellation of an effect from this source and one from zero-point energy.


1981 ◽  
Vol 59 (21) ◽  
pp. 3090-3094 ◽  
Author(s):  
Karl R. Kopecky ◽  
Michael C. Hall

There is an inverse isotope effect in the reaction between 2,2-diphenyl-1-picrylhydrazyl DPPH and 2,6-dideuteriostyrene of 0.75 ± 0.07 at 75 °C in degassed neat styrene. This result is consistent with the proposal that the reaction involves hydrogen transfer to DPPH from a Diels–Alder dimer of styrene. The rate constant for dimerization of styrene to this dimer is calculated to be 1.8 × 10−10 L mol−1 s−1 at 75 °C.


2015 ◽  
Vol 12 (20) ◽  
pp. 17009-17049
Author(s):  
D. Lewicka-Szczebak ◽  
J. Dyckmans ◽  
J. Kaiser ◽  
A. Marca ◽  
J. Augustin ◽  
...  

Abstract. The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. We performed several soil incubation experiments. For the first time, Δ17O isotope tracing was applied to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found bacterial denitrification to be typically associated with almost complete oxygen isotope exchange and a stable difference in δ18O between soil water and the produced N2O of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, some experimental setups yielded oxygen isotope exchange as low as 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a very significant correlation (R2 = 0.70, p < 0.00001). We hypothesise that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification the isotope exchange occurs prior to the isotope branching and that the mechanism of this exchange is mostly associated with the enzymatic nitrite reduction mediated by NIR. For bacterial denitrification, the branching isotope effect can be surprisingly low, about (0.0 ± 0.9) ‰; in contrast to fungal denitrification where higher values of up to 30 ‰ have been reported previously. This suggests that δ18O might be used as a tracer for differentiation between bacterial and fungal denitrification, due to their different magnitudes of branching isotope effects.


1996 ◽  
Vol 219-220 ◽  
pp. 136-138 ◽  
Author(s):  
D. Zech ◽  
K. Conder ◽  
H. Keller ◽  
E. Kaldis ◽  
K.A. Müller

Sign in / Sign up

Export Citation Format

Share Document