The crystal structure of N-[[6-methoxy-5-(trifluoromethyl)thio-1-naphthalenyl]thioxomethyl]-N-methylglycine, C16H14F3NO3S2

1983 ◽  
Vol 61 (9) ◽  
pp. 2137-2140 ◽  
Author(s):  
Kottayil I. Varughese ◽  
Maria Przybylska ◽  
Kazimir Sestanj ◽  
Francesco Bellini ◽  
Leslie G. Humber

The crystals of C16H14F3NO3S2 belong to the monoclinic space group P21/c with a = 11.577(1), b = 12.404(1), c = 12.366(1) Å, β = 90.01(1)°, and Z = 4. The structure was solved by MULTAN 78. The parameters were refined by block-diagonal least-squares to a final R of 0.047 for 2679 observed reflections. Of particular interest is an intramolecular attractive interaction between the sulfur and oxygen atoms with an [Formula: see text] distance of 2.879(2) Å, in which oxygen appears to act as an electrophile. Intermolecular hydrogen bonds between the hydroxyl and keto groups join the molecules related through a centre of symmetry into dimers.

1976 ◽  
Vol 31 (5) ◽  
pp. 541-543 ◽  
Author(s):  
Helmut Rieskamp ◽  
Rainer Mattes

The crystal structure of [enH2][VOF4(H2O)]2 has been determined from X-ray diffractometer data. Crystals are monoclinic, space group C2/c with Z = 4 in a unit cell of dimensions a = 16.576(13), b = 7.781(4), c = 10.338(8) Å, β = 120.0(1)°.The structure was refined by least-squares methods to R 0.053 for 1436 reflections. The structure contains monomeric [VOF4(H2O)]⁻-ions with the oxygen atoms in trans position. The bond distances are 1.577 Å (terminal oxygen) and 2.333 Å (H2O molecule), resp. The V–F distances vary between 1.769(2) and 1.858(2) Å for fluorine atoms involved in strong hydrogen bonds.


1977 ◽  
Vol 41 (319) ◽  
pp. 375-383 ◽  
Author(s):  
F. Scordari

SummaryFerrinatrite crystallizes in space group P, with a = 15·566(5), c = 8·69(1) Å, and Z = 6. The crystal structure was solved by three-dimensional Patterson and Fourier syntheses, and refined by least squares employing 2378 independent reflexions to a final R value of 0·068. The iron ions occupy special positions and are surrounded octahedrally by oxygen atoms. Fe3+O6 octahedra and SO4, tetrahedra are linked together to form infinite chains of Fe-O-S linkages in the [0001] direction. These chains are linked to each other by [NaO5(H2O)2] polyhedra and probably by hydrogen bonds. The topology of the arrangement is the same as that of the hypothetical P312 structure proposed by Moore and Araki (1974).


1977 ◽  
Vol 55 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
Nora Middlemiss ◽  
Frank Hawthorne ◽  
Crispin Calvo

Vanadium(III) tris(metaphosphate), V(PO3)3, crystallizes in the monoclinic space group Ic with lattice parameters a = 10.615(2), b = 19.095(4), c = 9.432(1) Å, β = 97.94(1)° with Z = 12. The equivalent parameters in the standard space group Cc are a = 13.189(1), b = 19.095(4), c = 9.432(1) Å, and β = 127.15(1)°. The structure was refined by full-matrix least-squares to an R = 0.091 (Rω = 0.065) utilizing 2467 reflections with the atomic positions and their isotropic vibration amplitudes as parameters. The structure consists of infinite chains of PO4 tetrahedra sharing corners with each other and bridged by VO6 octahedra. All oxygen atoms are shared between just two cations. The average [Formula: see text] bond is 1.581 Å while the average of those shared with vanadium is 1.483 Å. The VO6 group is moderately distorted, with differences of less than 0.06 Å between the longest and shortest V—O bond lengths in any of the three distinct VO6 groups. The average V—O bond lengths for the three VO6 groups are 1.995, 1.991, and 1.987 Å. A marked superlattice effect based on a cell with b/3 is noted.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


1967 ◽  
Vol 45 (20) ◽  
pp. 2303-2316 ◽  
Author(s):  
J. S. Stephens ◽  
C. Calvo

β-Zn3(PO4)2 crystallizes in the monoclinic space group P 21/c with lattice parameters, a = 9.393(3) Å, b = 9.170(6) Å, c = 8.686(3) Å, β = 125.73(10)°, and Z = 4. The three independent cations are strongly ligated to 4, 5, and 5 oxygen atoms, with average Zn—O bond distances of 1.98 ± 0.09 Å, 2.10 ± 0.10 Å, and 2.08 ± 0.13 Å respectively. In addition there are two longer Zn—O distances of 2.51 Å and 2.55 Å in this structure. The PO4 groups exist as independent, nearly regular tetrahedra, with each oxygen atom ligated to two cations. Unlike the structures found for the α and γ phases of Zn3(PO4)2, which contain ribbons and sheets respectively as the basic cation coordination motif, the structure of β-Zn3(PO4)2 contains interconnected sheets.


2000 ◽  
Vol 55 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Katerina E. Gubina ◽  
Vladimir A. Ovchynnikov ◽  
Vladimir M. Amirkhanov ◽  
Viktor V. Skopenkoa ◽  
Oleg V. Shishkinb

N,N′-Tetramethyl-N"-benzoylphosphoryltriamide (I) and dimorpholido-N-benzoylphosphorylamide (II), and their sodium salts Nal, Nall were synthesized and characterized by means of IR and 1H, 31P NMR spectroscopy. The structures of I, II were determined by X-ray diffraction: I monoclinic, space group P2i/c with a = 10.162(3), b= 11.469(4), c = 12.286(4) Å , β = 94.04°, V = 1428.4(8) A 3, Z = 4, p(calcd) = 1.187 g/cm3; II monoclinic, space group C2/c with a = 15.503(4), b = 10.991(3), c = 22.000(6) Å, β = 106.39°, V = 3596.3(17) Å3, Z = 8, p(calcd.) = 1.253 g/cm3. The refinement of the structures converged at R = 0.0425 for I, and R = 0.068 for II. In both structures the molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.


1986 ◽  
Vol 51 (11) ◽  
pp. 2521-2527 ◽  
Author(s):  
Jan Lokaj ◽  
Eleonóra Kellö ◽  
Viktor Kettmann ◽  
Viktor Vrábel ◽  
Vladimír Rattay

The crystal and molecular structure of SnBu2(pmdtc)2 has been solved by X-ray diffraction methods and refined by a block-diagonal least-squares procedure to R = 0.083 for 895 observed reflections. Monoclinic, space group C2, a = 19.893(6), b = 7.773(8), c = 12.947(8) . 10-10 m, β = 129.07(5)°, Z = 2, C20H38N2S4Sn. Measured and calculated densities are Dm = 1.38(2), Dc = 1.36 Mg m-3. Sn atom, placed on the twofold axes, is coordinated with four S atoms in the distances Sn-S 2.966(6) and 2.476(3) . 10-10 m. Coordination polyhedron is a strongly distorted octahedron. Ligand S2CN is planar.


1998 ◽  
Vol 51 (8) ◽  
pp. 673 ◽  
Author(s):  
David Anastasi ◽  
Neil F. Curtis ◽  
Olga P. Gladkikh ◽  
Timothy J. C. Goode ◽  
David C. Weatherburn

Preparations are reported for (3,10-bisalkyl-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) perchlorates (alkyl = propyl, 1-methylethyl, butyl, cyclohexyl, 2-(diethylammmonio)ethyl, 2-hydroxyethyl, 3- hydroxypropyl and 2-hydroxypropyl) by reaction of bis(ethane-1,2-diamine)copper(II) perchlorate with methanal, and alkylamines. The structure of {3,10-bis(2-hydroxypropyl)-1,3,5,8,10,12-hexa-azacyclotetradecane}copper(II) perchlorate is reported [C14H34Cl2CuN6O10, monoclinic, space group P21/c, a 8·504(2), b 14·855(5), c 9·034(2) Å, β 98·99(2)°, Z 2, R1 0· 061 for 1667 reflections]. The centrosymmetrical cation has a mean Cu–N distance of 2·001(4) Å, with perchlorate ion oxygen atoms weakly coordinated in the axial sites with a Cu–O distance of 2·61(1) Å. The planar copper(II) macrocycle cations form stacks which are linked by N–H · · · O and O–H · · · O–ClO3 hydrogen bonds involving the extended 2-hydroxypropyl substituents, with no interaction between the copper(II) ion and the hydroxy groups. (5-Alkyl-3,5,7-triazanonane-1,9-diamine)copper(II) perchlorate compounds with the same 3-substituent alkyl groups (plus methyl, and ethyl, and also phenyl) are similarly prepared by using 1 mole proportion of the amine and 2 mole proportions of methanal


2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


1975 ◽  
Vol 53 (7) ◽  
pp. 1046-1050 ◽  
Author(s):  
Ishwar Singh ◽  
Crispin Calvo

Dimedone, C8H12O2, crystallizes with monoclinic symmetry, a = 10.079(7), b = 6.835(3), c = 12.438(4) Å, β = 110.24(5)°, space group P21/n and Z = 4. The structure of this compound was solved by direct methods and refined by full-matrix least-squares techniques using 1205 unique reflections to a final R of 0.047. In the solid state it exists in the enolic form and these molecules pack in the crystal in systems of infinite chains linked together by hydrogen bonds in the y direction. These results are virtually the same as recently reported by Semmingsen.


Sign in / Sign up

Export Citation Format

Share Document