The crystal structure of ferrinatrite, Na3(H2O)3[Fe(SO4)3] and its relationship to Maus's salt, (H3O)2K2{K0.5(H2O)0.5}6[Fe3O(H2O)3(SO46](OH)2

1977 ◽  
Vol 41 (319) ◽  
pp. 375-383 ◽  
Author(s):  
F. Scordari

SummaryFerrinatrite crystallizes in space group P, with a = 15·566(5), c = 8·69(1) Å, and Z = 6. The crystal structure was solved by three-dimensional Patterson and Fourier syntheses, and refined by least squares employing 2378 independent reflexions to a final R value of 0·068. The iron ions occupy special positions and are surrounded octahedrally by oxygen atoms. Fe3+O6 octahedra and SO4, tetrahedra are linked together to form infinite chains of Fe-O-S linkages in the [0001] direction. These chains are linked to each other by [NaO5(H2O)2] polyhedra and probably by hydrogen bonds. The topology of the arrangement is the same as that of the hypothetical P312 structure proposed by Moore and Araki (1974).

1983 ◽  
Vol 61 (9) ◽  
pp. 2137-2140 ◽  
Author(s):  
Kottayil I. Varughese ◽  
Maria Przybylska ◽  
Kazimir Sestanj ◽  
Francesco Bellini ◽  
Leslie G. Humber

The crystals of C16H14F3NO3S2 belong to the monoclinic space group P21/c with a = 11.577(1), b = 12.404(1), c = 12.366(1) Å, β = 90.01(1)°, and Z = 4. The structure was solved by MULTAN 78. The parameters were refined by block-diagonal least-squares to a final R of 0.047 for 2679 observed reflections. Of particular interest is an intramolecular attractive interaction between the sulfur and oxygen atoms with an [Formula: see text] distance of 2.879(2) Å, in which oxygen appears to act as an electrophile. Intermolecular hydrogen bonds between the hydroxyl and keto groups join the molecules related through a centre of symmetry into dimers.


1973 ◽  
Vol 51 (17) ◽  
pp. 2810-2820 ◽  
Author(s):  
J. T. Wróbel ◽  
B. Bobeszko ◽  
T. I. Martin ◽  
D. B. MacLean ◽  
N. Krishnamachari ◽  
...  

The spectroscopic properties of thiobinupharidine and its isomer, neothiobinupharidine, of established structure, have been examined and compared. From this study it was possible to deduce the structure and relative configuration of the alkaloid. The structure has been firmly established and the absolute configuration determined by the study of the crystal structure of thiobinupharidine dihydrobromide dihydrate, C30H42O2N2S•2HBr•2H2O. The crystals are orthorhombic with space group C2221, a = 25.128(6), b = 9.869(2), c = 26.380(6) Å, and Z = 8. The structure was refined, using full-matrix least-squares techniques with 1934 reflections, to a final R value of 0.097. The thiobinupharidine moiety hydrogen bonds to one of two types of H2O–Br–H2O spiral chains in the structure. The tetrahydrothiophene ring is distorted from planarity, and this together with the nonequivalence of the S and C atoms in the ring causes the molecule to deviate from C2 symmetry


1976 ◽  
Vol 31 (5) ◽  
pp. 541-543 ◽  
Author(s):  
Helmut Rieskamp ◽  
Rainer Mattes

The crystal structure of [enH2][VOF4(H2O)]2 has been determined from X-ray diffractometer data. Crystals are monoclinic, space group C2/c with Z = 4 in a unit cell of dimensions a = 16.576(13), b = 7.781(4), c = 10.338(8) Å, β = 120.0(1)°.The structure was refined by least-squares methods to R 0.053 for 1436 reflections. The structure contains monomeric [VOF4(H2O)]⁻-ions with the oxygen atoms in trans position. The bond distances are 1.577 Å (terminal oxygen) and 2.333 Å (H2O molecule), resp. The V–F distances vary between 1.769(2) and 1.858(2) Å for fluorine atoms involved in strong hydrogen bonds.


1991 ◽  
Vol 46 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Klaus Brodersen ◽  
Jörg Zimmerhackl

1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane-dimercury(I)-diperchlorate is formed by the reaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane in ethanol with an aqueous solution of dimercury(I)-diperchlorate.It crystallizes in the triclinic space group P Ī with a = 1020.6(2), b = 1200.6(8), c = 1441.1(6) pm , α = 69.60(5)°, β = 83.04(13)°, y = 66.53(4)° and Z = 2. The crystal structure was determined by X -ray diffraction and refined to an R-value o f 0.079. The Hg22+ -ion is coordinated to both nitrogen atoms and four oxygen atoms of one molecule of the ligand. By changing four C - O torsional angles from trans to gauche, the ligand adopts a helical, chiral configuration around the Hg22+-ion. The CIO4--ions are not coordinated to the Hg22+-ion.


1990 ◽  
Vol 54 (377) ◽  
pp. 613-616 ◽  
Author(s):  
T. V. Varaksina ◽  
V. S. Fundamensky ◽  
S.K. Filatov ◽  
L. P. Vergasova

AbstractThe crystal structure of the new mineral kamchatkite, a= 9.741(5), b= 12.858(6), c=7.001(3)Å, space group Pna21, Z = 4, has been determined through direct methods using 1430 intensities and refined to a final discrepancy index R = 0.055. It contains (SO4) tetrahedra and Cu octahedra interconnected by oxygen atoms to form an electrostatically neutral three-dimensional arrangement of formula Cu3O[SO4]2 which contains channels parallel to [001]. The channels are not empty but house KCl molecules.


Author(s):  
Jamila Benabdallah ◽  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Habib Boughzala ◽  
Abderrahim Titi

In the title compound, [Co(C10H8N2)3](C9H5N4O)2, the tris(2,2′-bipyridine)cobalt(II) dication lies across a twofold rotation axes in the space group C2/c. The N atoms of the three bipyridine ligands form a distorted octahedron around the cobalt ion. All the N atoms of the polynitrile 1,1,3,3-tetracyano-2-ethoxypropenide anions participate in C—H...N hydrogen bonds ensuring crystal cohesion and forming a three-dimensional structure. The structure is further stabilized by C—H...π(cation) and anion...π(cation) interactions.


2014 ◽  
Vol 70 (9) ◽  
pp. o924-o925 ◽  
Author(s):  
Raúl Castañeda ◽  
Sofia A. Antal ◽  
Sergiu Draguta ◽  
Tatiana V. Timofeeva ◽  
Victor N. Khrustalev

In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C9H7NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimersviatwo O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N2H2ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space groupP21/n. The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space groupFdd2) studied previously [Roychowdhuryet al.(1978).Acta Cryst.B34, 1047–1048; Banerjee & Saha (1986).Acta Cryst.C42, 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N2H2ring adopting a butterfly conformation.


1975 ◽  
Vol 53 (7) ◽  
pp. 1046-1050 ◽  
Author(s):  
Ishwar Singh ◽  
Crispin Calvo

Dimedone, C8H12O2, crystallizes with monoclinic symmetry, a = 10.079(7), b = 6.835(3), c = 12.438(4) Å, β = 110.24(5)°, space group P21/n and Z = 4. The structure of this compound was solved by direct methods and refined by full-matrix least-squares techniques using 1205 unique reflections to a final R of 0.047. In the solid state it exists in the enolic form and these molecules pack in the crystal in systems of infinite chains linked together by hydrogen bonds in the y direction. These results are virtually the same as recently reported by Semmingsen.


1979 ◽  
Vol 57 (5) ◽  
pp. 586-590 ◽  
Author(s):  
Kenneth S. Chong ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Details of the synthesis and physical properties of H2NCH2CH2O•GaMe2 are given. The compound crystallizes in the tetragonal space group P43, a = 12.2771(2), c = 9.7345(4) Å, Z = 8. The structure was solved by Patterson and Fourier syntheses and was refined by fullmatrix least-squares procedures to a final R value of 0.028 and Rw of 0.036 for 1378 reflections with I ≥ 3σ(I). The structure consists of monomeric molecules containing tetrahedrallycoordinated gallium atoms. Molecules are linked by an extensive network of N—H … O hydrogen bonds. Bond lengths (corrected for libration) are: Ga—O, 1.916(5) and 1.917(4), Ga—N, 2.056(6) and 2.072(6), and Ga—C, 1.962–1.974(8–9) Å.


1970 ◽  
Vol 48 (6) ◽  
pp. 890-894 ◽  
Author(s):  
C. Calvo ◽  
K. Neelakantan

The crystal structure of Mg2As2O7 has been refined by full matrix least squares procedures using 587 observed reflections. The structure of Mg2As2O7 is of the thortveitite type, as reported by Łukaszewicz, with space group C2/m and unit cell dimensions a = 6.567(2) Å, b = 8.524(4) Å, c = 4.739(1) Å, β = 103.8(1)°, and Z = 2. The As—O—As group in the anion appears to be linear but the central oxygen atom undergoes considerable disorder in the plane perpendicular to this group. The AsO bond distances uncorrected for thermal motion are 1.67 Å for the As—O(—As) bond and 1.66 and 1.65 Å for the terminal As—O bonds. The final R value obtained is 0.088.


Sign in / Sign up

Export Citation Format

Share Document