Excess molar volumes and viscosities for the n-decane + 1-chlorodecane system at different temperatures

1993 ◽  
Vol 71 (6) ◽  
pp. 790-795 ◽  
Author(s):  
Mercedes E. F. De Ruiz Holgado ◽  
Cecilia R. De Schaefer ◽  
Franco Davolio ◽  
Miguel Katz

Excess molar volumes, excess viscosities, and excess energies of activation for viscous flow have been determined for the n-decane + 1-chlorodecane system at different temperatures, over the whole concentration range. The Prigogine–Flory–Patterson model for solution thermodynamics has been used to calculate the excess molar volumes. Grunberg and Nissan, McAllister, Teja and Rice, and Schrodt and Akel models have been used to calculate viscosity coefficients and these were compared with experimental data for the mixtures.


2002 ◽  
Vol 80 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Amalendu Pal ◽  
Rakesh Kumar Bhardwaj

Excess molar volumes (VmE) and dynamic viscosities (η) have been measured as a function of composition for binary liquid mixtures of propylamine with 2,5-dioxahexane, 2,5,8-trioxanonane, 2,5,8,11-tetraoxadodecane, 3,6,9-trioxaundecane, and 5,8,11-trioxapentadecane at 298.15 K. The excess volumes are positive over the entire range of composition for the systems propylamine + 2,5-dioxahexane, and + 3,6,9-trioxaundecane, negative for the systems propylamine + 2,5,8,11-tetraoxadodecane, and + 5,8,11-trioxapentadecane, and change sign from positive to negative for the remaining system propylamine + 2,5,8-trioxanonane. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG*E) have been derived. These values are positive for all mixtures with the exception of propylamine + 2,5-dioxahexane.Key words : excess volume, viscosity, binary mixtures.



2009 ◽  
Vol 64 (11) ◽  
pp. 758-764 ◽  
Author(s):  
Anwar Ali ◽  
Rajan Patel ◽  
Shahjahan Khan ◽  
Vidiksha Bhushan

The densities (ρ), viscosities (η), and refractive indices (nD) of (0.01, 0.05, 0.10, 0.15, and 0.20 m) amino acid, glycine, and peptides, diglycine and triglycine in 0.01 m aqueous tartrazine solution were determined at 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15 K. The density data were utilized to evaluate apparent molar volumes (φv) which, in turn, were used to determine partial molar volumes (φv ◦) using Masson’s equation. The transfer volumes were also calculated. The viscosity data were analyzed using the Jones-Dole equation to determine the viscosity coefficients and the activation parameters. The activation parameters of viscous flow were obtained to throw light on the mechanism of viscous flow. The molar refraction was calculated using the refractive index data. The results were interpreted in the light of ion-ion, ion-nonpolar, and nonpolar-nonpolar interactions and the effect of increasing hydrophobicity as we move from glycine to triglycine on these interactions in presence of the dye tartrazine was also investigated.



2015 ◽  
Vol 2 (2) ◽  
pp. 133-148
Author(s):  
Md. Zaved Hossain Khan ◽  
Md Helal Uddin ◽  
Md Shahrul Islam ◽  
G.M Arifuzzaman Khan ◽  
Md. Abdullah Al Muhit ◽  
...  

Densities, p, and viscosities, ?, of four binary systems: N,N-dimethyl formamide (DMF) + 1-propanol, DMF + 2-propanol, DMF + butanol and DMF + 1-pentanol have been measured at five different temperatures ranging form 303.15K to 323.15K at an interval of 5K. Excess molar volumes were found to be negative over the entire concentration ranges. The negative excess molar volume decreases with the increase of chain length of alcohol, the magnitude follows the order DMF+ 1-propanol >, + 2-propanol >, +butanol >, + 1-pentanol. The change of viscosity has been found to be sensitive to the chain length of alcohols. Excess viscosities and Grunberg- Nissan interaction parameters have been found to be positive for DMF + 1-propanol and DMF + 2-propanol systems, and negative for other two systems DMF + butanol and DMF + 1-pentanol. The thermodynamic energy of activation; such as, positive ?G#E each also compatible with the observation.



2005 ◽  
Vol 70 (11) ◽  
pp. 1313-1323 ◽  
Author(s):  
Vasile Dumitrescu ◽  
Octav Pântea

The viscosities of binary liquid mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol have been determined at 298.15, 303.15, 308.15, 313.15 and 318.15 K over the whole concentration range. The Hind, Grunberg-Nissan, Wijk, Auslander and McAllister models were used to calculate the viscosity coefficients and these were compared with the experimental data for the mixtures. Excess viscosities were also calculated and fitted to the Redlich-Kister equation. Various thermodynamic properties of viscous flow activation were determined and their variations with composition are discussed.



2021 ◽  
Vol 37 (5) ◽  
pp. 1083-1090
Author(s):  
V. V. Kadam ◽  
A. B. Nikumbh ◽  
T. B. Pawar ◽  
V. A. Adole

The densities and viscosities of electrolytes are essential to understand many physicochemical processes that are taking place in the solution. In the present research, the densities and viscosities of lithium halides, LiX (X = Cl, Br, I ) and KCl in (0, 20, 40, 50, 60, 80 and 100) mass % of methanol + water at 313.15K were calculated employing experimental densities (ρ), the apparent molar volumes( ϕv) and limiting apparent molar volumes (0v) of the electrolytes. The (0v) of electrolyte offer insights into solute-solution interactions. In terms of the Jones-Dole equation for strong electrolyte solution, the experimental data of viscosity were explored. Viscosity coefficients A and B have been interpreted and discussed. The B-coefficient values in these systems increase with increase of methanol in the solvents mixtures. This implied that when the dielectric constant of the solvent decreases, so do the solvent-solvent interactions in these systems.



1990 ◽  
Vol 160 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Graciela C. Pedrosa ◽  
Julio A. Salas ◽  
Miguel Katz


Sign in / Sign up

Export Citation Format

Share Document