Calorimetric investigations of Al3+(aq), Al(OH)4−(aq), and aluminium–citrate complexes at 298.15 K

1997 ◽  
Vol 75 (8) ◽  
pp. 1110-1113 ◽  
Author(s):  
Ching-hsien Wu ◽  
Celina Dobrogowska ◽  
Xin Zhang ◽  
Loren G. Hepler

We have combined results of earlier measurements leading to equilibrium constants for formation and reaction of aluminum–citrate complexes in aqueous solution at 298.15 K with results of our calorimetric measurements at this same temperature to obtain ΔH values for reactions of Al3+(aq) with citrate ions. Results of some of these calorimetric measurements also lead to a value of ΔH for the reaction Al3+(aq) + 4 OH`(aq) = Al(OH)4−(aq). Keywords: aluminum hydroxide, Al(OH)4−(aq), thermodynamics; aluminium–citrate complexes, thermodynamics; citrate–aluminum complexes, thermodynamics; aluminum (3+, aq), thermodynamics.


1973 ◽  
Vol 51 (12) ◽  
pp. 1941-1944 ◽  
Author(s):  
Takeki Matsui ◽  
Loren G. Hepler

Calorimetric measurements have led to ΔH0 values for ionization of nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane in aqueous solution at 298°K. Combinations of these enthalpies with free energies from equilibrium constants for ionization have led to ΔS0 values for the ionization reactions. It is noted that the trend toward decreasing pK with methyl substitution in nitroalkanes is unusual compared to phenols and carboxylic acids. Similarly, correlations of ΔS0 with ΔG0 and ΔH0 are different for nitroalkanes than for other acids.



Talanta ◽  
1996 ◽  
Vol 43 (10) ◽  
pp. 1689-1695 ◽  
Author(s):  
L PEZZA ◽  
M MOLINA ◽  
M DEMORAES ◽  
C MELIOS ◽  
J TOGNOLLI


1975 ◽  
Vol 151 (3) ◽  
pp. 631-636 ◽  
Author(s):  
R I Brinkworth ◽  
C J Masters ◽  
D J Winzor

Rabbit muscle lactate dehydrogenase was subjected to frontal affinity chromatography on Sepharose-oxamate in the presence of various concentrations of NADH and sodium phosphate buffer (0.05 M, pH 6.8) containing 0.5 M-NaCl. Quantitative interpretation of the results yields an intrinsic association constant of 9.0 × 104M−1 for the interaction of enzyme with NADH at 5°C, a value that is confirmed by equilibrium-binding measurements. In a second series of experiments, zonal affinity chromatography of a mouse tissue extract under the same conditions was used to evaluate assoication constants of the order 2 × 105M−1, 3 × 105M−1, 4 × 105M−1, 7 × 105M−1 and 2 × 106M−1 for the interaction of NADH with the M4, M3H, M2H2, MH3 and H4 isoenzymes respectively of lactate dehydrogenase.



1995 ◽  
Vol 50 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Masaaki Tabata ◽  
Masahiro Ide ◽  
Kentaro Kaneko

Thermochromism was observed for an aqueous solution containing zinc(II) and mercury( II) cations and N-p-nitrobenzyl-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin anion (NO2Bz(Htpps)4-) in the temperature range 10 to 70 °C. The equilibrium constants and the thermodynamic parameters of Zn(NO2Bztpps)3- and Hg(NO2Bztpps)3- have been determined spectrophotometrically to elucidate the thermochromism at 10, 15, 20, 25 and 30 °C in 0.1 mol dm-3 NaNO3. The protonation and metalation constants of NO2Bz(Htpps)4- are defined as K2 = [H2P][H+]-1[HP]-1, K3 = [H3P][H+]-1[H2P]-1 and KMP = [M P][H+][M2+]-1[HP]-1, where HP and MP denote the free base form of the prophyrin and the metalloporphyrins of zinc(II) and mercury(II), respectively. Charges of the prophyrin and metalloporphyrins are omitted for simplicity. The following values were found: logK2 = 7.75 ±0.02 (25 °C), ΔH°/kJmol-1 = -21.2±0.5 and ΔS°/Jmol-1K-1 = 77±1, logK3 = 2.55±0.02 (25 °C), ΔH°/kJmol-1 = -25±0.8 and ΔS°/Jmol-1K-1 = -35±3 and log KZnP = 0.63±0.03 (25 °C), ΔH°/kJmol-1 = 31.0±0.8 and ΔS°/Jmol-1K-1 = 116±3, logKHgP = 6.22±0.03 (25 °C), ΔH°/kJmol-1 = 4.5±0.7 and ΔS°/Jmol-1K-1 = 134±2. The distribution curve calculated from the thermodynamic parameters sufficiently agrees with the observed metal exchange reaction between the metalloporphyrins.



2018 ◽  
Vol 56 (1A) ◽  
pp. 135
Author(s):  
Chau The Lieu Trang

We present lightweight macro-mesoporous spinel CoAl2O4 nanostructured aerogels derived from water-soluble aluminum-chitosan complexes. Chitosan nanofibrils interact with aluminum ions to swell into hydrogels. The aluminum-induced swelling is extended to dissolve the hydrogels in water to form a homogeneous aluminum-chitosan aqueous solution. The addition of cobalt ions in the aluminum-chitosan liquids which are solidified by lyophilization to generate cotton-like aerogel composites. Uniform incorporation of cobalt-aluminum hydroxide ions onto chitosan leads nanofibrils to serve as a hierarchical template to support mixed metal hydroxides in the aerogel composites. We investigated the thermal removal of chitosan template in the composites to obtain spinel CoAl2O4 aerogels that truly replicate spider web-like fibrillar networks of chitosan template. Enlarged porosity, high crystallinity, and lightweight make the CoAl2O4 aerogels useful as a colorful nano-pigment for magnetic ceramics.



1997 ◽  
Vol 75 (1) ◽  
pp. 52-55 ◽  
Author(s):  
Frank Hacket ◽  
Jose-Miguel Coteron ◽  
Hans-Jörg Schneider ◽  
Vladimir P. Kazachenko

Equilibrium constants of complexes between β-cyclodextrin and glucose, galactose, or mannose have been determined by fluorometric competition titrations in water to be as low as K = 1 – 0.5 M−1, in sharp contrast to recently published values for glucose around K = 400 M–1. The pentoses ribose, xylose, and arabinose show association constants between 6.3 and 1.5 M−1, in agreement with published values. Preliminary computer-aided molecular modelling studies suggest that the small values observed for the hexoses are not due to steric hindrance of an intracavity inclusion but to a smaller number of intermolecular hydrogen bonds and to some strain as a result of cyclodextrin deformation. Calorimetric measurements of the glucose–β-cyclodextrin complex show, again in contradiction with the literature, an endothermic reaction, or a free enthalpy value close to zero. Key words: cyclodextrin complexes, sugar complexation, glucose complexation, calorimetry, computer-aided molecular modelling.



Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 429-440 ◽  
Author(s):  
S. Gamoudi ◽  
N. Frini-Srasra ◽  
E. Srasra

AbstractThe use of organoclays as adsorbents in the remediation of polluted water has been the subject of many recent studies. In the present work, a Tunisian smectite modified with two cationic surfactants was used as an adsorbent to examine the adsorption kinetics, isotherms and thermodynamic parameters of fluoride ions from aqueous solution. Various pH values, initial concentrations and temperatures have been tested. Two simplified kinetic models, first-order and pseudo-second-order, were used to predict the adsorption rate constants. It was found that the adsorption kinetics of fluoride onto modified smectites at different operating conditions can best be described by the pseudo-second-order model. Adsorption isotherms and equilibrium adsorption capacities were determined by the fitting of the experimental data to well known isotherm models including those of Langmuir and Freundlich. The results showed that the Langmuir model appears to fit the adsorption better than the Freundlich adsorption model for the adsorption of fluoride ions onto modified smectites. The equilibrium constants were used to calculate thermodynamic parameters, such as the change of free energy, enthalpy and entropy. Results of this study demonstrated the effectiveness and feasibility of organoclays for the removal of fluoride ions from aqueous solution.



1962 ◽  
Vol 40 (3) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.



1999 ◽  
Vol 38 (21) ◽  
pp. 4765-4770 ◽  
Author(s):  
Eric J. Martinez ◽  
Jean-Luc Girardet ◽  
Claude Maerschalk ◽  
Claude Morat


Sign in / Sign up

Export Citation Format

Share Document