Crystal structures of dihydroquercetin 3-acetate and dihydroquercetin 3,3'4',7-tetraacetate: hydrogen bonding in 5-hydroxyflavanones

1999 ◽  
Vol 77 (8) ◽  
pp. 1436-1443 ◽  
Author(s):  
Eberhard Kiehlmann ◽  
Kumar Biradha ◽  
Konstantin V Domasevitch ◽  
Michael J Zaworotko

The molecular structures of dihydroquercetin 3-acetate 3 and dihydroquercetin 3,3',4',7-tetraacetate 4 were determined by single crystal X-ray analysis. Comparison of their crystal data with those of 16 known 5-hydroxyflavanones shows intramolecular O(5)-H···O(4)=C hydrogen bonding, preference for nearly perpendicular orientation of the two aromatic rings and preferred sofa conformation of the heterocyclic ring. The major stabilizing force in the crystal packing pattern of 3 is intermolecular hydrogen bonding.Key words: crystal structure, dihydroquercetin, flavanones, hydrogen bonding.

1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


2013 ◽  
Vol 834-836 ◽  
pp. 515-518
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Ting Ting Huang ◽  
Yang Xu ◽  
Lin Tong Wang ◽  
...  

A novel praseodymium complex C5H13O11Pr has been synthesized from hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Pr1 atom is nine coordinated by nine O atoms. The crystal packing is stabilized by O-H...O hydrogen bonding interactions.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Ataf A. Altaf ◽  
Adnan Shahzad ◽  
Zarif Gul ◽  
Sher A. Khan ◽  
Amin Badshah ◽  
...  

1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α=γ= 90 andβ  ≠90) structure with the space group P21/c. The unit cell dimensions area= 11.5131 (4) Å,b= 9.2355 (3) Å,c= 11.3093 (5) Å,α= 90°,β= 99.569° (2),γ= 90°,V= 1185.78 (8) Å3, andZ= 4. The crystal packing is stabilized by intermolecular (N–H⋯S) hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.


2018 ◽  
Vol 74 (7) ◽  
pp. 1013-1016
Author(s):  
Morten K. Peters ◽  
Christian Näther ◽  
Rainer Herges

The crystal structure of the title compound, C11H10N4, comprises molecules in a trans conformation for which all the atoms are located in general positions. The six-membered rings are coplanar and this arrangement might be stabilized by intramolecular N—H...N hydrogen bonding. In the crystal, the molecules are linked into helical chains parallel to the b axis via N—H...N hydrogen bonding. The molecular packing shows a herringbone-like pattern along the a axis. Comparison of the X-ray powder diffraction with that calculated from single crystal data proves that a pure crystalline phase was obtained and UV–Vis measurements reveal that only the trans isomer is present.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


2013 ◽  
Vol 470 ◽  
pp. 3-6
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Xiao Ri Sun ◽  
Lin Tong Wang ◽  
Yun Chen Zhang ◽  
...  

A novel Ga complex (NH4)Ga(C7H3NO4)2 has been synthesized from a solution reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Ga atom is six-coordinated by two N atoms and four O atoms from two 2,6-pyridine dicarboxylic acid anions. The crystal packing is stabilized by O-H...N hydrogen bonding interactions.


2013 ◽  
Vol 634-638 ◽  
pp. 3201-3204
Author(s):  
Hai Xing Liu ◽  
Huan Mei Guo ◽  
Guang Zeng ◽  
Qing Hua Zhang ◽  
Zhang Xue Yu

A novel Cu metal complex [CuCl(C12H8N2)2]Cl 0.5(H2O)5.5 has been synthesized from a solution reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. [CuCl(C12H8N2)2]Cl 0.5(H2O)5.5, Monoclinic, C2/c. a=23.086(2)Å, b =30.090(3)Å, c=7.4580(8)Å, α=γ=90, β=97.67, V=5134.3Å3, Z=8, R1 =0.0923, wR2 =0.2182, T=298K. The crystal packing is stabilized by O-H...O and O-H...Cl hydrogen bonding and Л-Л interactions.


1981 ◽  
Vol 34 (10) ◽  
pp. 2095 ◽  
Author(s):  
AJ Finney ◽  
MA Hitchman ◽  
CL Raston ◽  
GL Rowbottom ◽  
BW Skelton ◽  
...  

The crystal and molecular structures of the compounds [Ni(py)4(ONO)2],2py, [Ni(γmpy),(ONO)2] and [Ni(prz)4(ONO)2] are reported.�All three are trans nitrito complexes, the pyridine (py) compound containing two pyridine molecules of solvation. The aromatic rings in the first two complexes adopt 'paddle wheel' conformations with pitch angles varying between 40 and 70�. The nitrite ions are positioned so as to minimize repulsive interactions with the amines, and it seems likely that these groups bond through oxygen rather than nitrogen because this allows a lesser degree of interligand steric interference. The amine rings in [Ni(prz)4(ONO)2] are orthogonal to the plane containing the nickel and coordinated pyrazole nitrogen atoms; the nitrito groups are disordered between two inequivalent positions, each of which involves hydrogen bonding with the pyrazole NH groups. The nitrite infrared frequencies are similar to those observed for other nickel(II) nitrito complexes except that the antisymmetric NO stretching mode of one of the groups in the pyrazole complex is much lower in energy than expected, being in the range normally associated with a nitrogen-bonded or chelated nitrite group. It is suggested that this deviation may be caused by the hydrogen bonding in the complex. The electronic spectra of the compounds yield 10Dq values of 9100 and 8500 cm-1 for the nitrite ligands in [Ni(py)4(ONO)2] and Ni(prz)4(ONO)2], respectively, placing the nitrito group towards the weaker end of the spectro-chemical series.


Author(s):  
William W. Brennessel ◽  
John E. Ellis

The reaction of the [K(18-crown-6)(thf)2]1+ (thf is tetrahydrofuran) salt of bis(anthracene)ferrate(−1), or [Fe(C14H10)2]−, with 2,6-dimethylphenyl isocyanide (CNXyl) in thf resulted in the formation of two new iron isocyanide complexes, namely, [(1,2,3,4-η)-anthracene]tris(2,6-dimethylphenyl isocyanide)iron, [Fe(C14H10)(C9H9N)3] or [Fe(1,2,3,4-η-C14H10)(CNXyl)3], and {5,6-bis(2,6-dimethylanilino)-3-(2,6-dimethylphenyl)-1,2,7-tris[(2,6-dimethylphenyl)imino]-3-azoniahept-3-ene-1,4,7-triido}tris(2,6-dimethylphenyl isocyanide)iron tetrahydrofuran disolvate, [Fe(C54H56N6)(C9H9N)3]·2C4H8O or [Fe(C54H56N6)(CNXyl)3]·2C4H8O, which were characterized by single-crystal X-ray diffraction. The former is likely an intermediate along the path to the known homoleptic [Fe(CNXyl)5], while the latter contains a tridentate ligand that is formed from the `coupling' of six CNXyl ligands. A third crystal structure from this reaction, (7-methylindol-1-ido-κN)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6 O)potassium, [K(C9H8N)(C12H24O6)] or [K(C9H8N)(18-crown-6)], contains a 7-methylindol-1-ide anion, in which one CNXyl ligand has shed a proton during its reductive cyclization.


1989 ◽  
Vol 44 (8) ◽  
pp. 942-945 ◽  
Author(s):  
Wolfgang Schnick

Phosphorothionic triamide SP(NH2)3 is obtained by slow addition of SPCl3 dissolved in dry CH2Cl2 to a satured solution of NH3 in CH2Cl2 at —50°C. Ammonium chloride is removed from the resulting precipitate by treatment with HNEt2 followed by extraction with CH2Cl2. Coarse crystalline SP(NH2)3 is obtained after recrystallization from dry methanol. The crystal structure of SP(NH2)3 has been determined by single crystal X-ray methods (Pbca; a = 922.3(1), b = 953.8(1), c = 1058.4(2) pm, Z = 8). In the crystals the molecules show non-crystallographic point symmetry C8. The P—S bond (195.4(1) pm) is slightly longer than in SPCl3. From P—N bond lengths of about 166 pm a significant electrostatic strengthening of the P—N single bonds is assumed. Weak intermolecular hydrogen bonding interactions (N —H · · · N ≥ 329.5 pm; N — H · · · S ≥ 348.3 pm) are observed.Investigation of thermal properties shows a melting temperature of 115°C for SP(NH2)3. According to combined DTA/TG and MS investigations above this temperature the compound decomposes by evolution of H2S and NH3 to yield amorphous phosphorus(V)nitride.


Sign in / Sign up

Export Citation Format

Share Document