Effect of acidic electrolyzed water on the viability of bacterial and fungal plant pathogens and on bacterial spot disease of tomato

2006 ◽  
Vol 52 (10) ◽  
pp. 915-923 ◽  
Author(s):  
P A Abbasi ◽  
G Lazarovits

Acidic electrolyzed water (AEW), known to have germicidal activity, was obtained after electrolysis of 0.045% aqueous solution of sodium chloride. Freshly prepared AEW (pH 2.3–2.6, oxidation–reduction potential 1007–1025 mV, and free active chlorine concentration 27–35 ppm) was tested in vitro and (or) on tomato foliage and seed surfaces for its effects on the viability of plant pathogen propagules that could be potential seed contaminants. Foliar sprays of AEW were tested against bacterial spot disease of tomato under greenhouse and field conditions. The viability of propagules of Xanthomonas campestris pv. vesicatoria (bacterial spot pathogen), Streptomyces scabies (potato scab pathogen), and Fusarium oxysporum f.sp. lycopersici (root rot pathogen) was significantly reduced 4–8 log units within 2 min of exposure to AEW. Immersion of tomato seed from infected fruit in AEW for 1 and 3 min significantly reduced the populations of X. campestris pv. vesicatoria from the surface of the seed without affecting seed germination. Foliar sprays of AEW reduced X. campestris pv. vesicatoria populations and leaf spot severity on tomato foliage in the greenhouse. In the field, multiple sprays of AEW consistently reduced bacterial spot severity on tomato foliage. Disease incidence and severity was also reduced on fruit, but only in 2003. Fruit yield was either enhanced or not affected by the AEW sprays. These results indicate a potential use of AEW as a seed surface disinfectant or contact bactericide.Key words: electrolyzed oxidizing water, seed disinfectant, foliar sprays, bacterial spot control.

HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 969-972 ◽  
Author(s):  
Harold A.A. Gibbs

Xanthomonas campestris pv. vesicatoria (Xcv) recovered from Commelina benghalensis L., caused bacterial spot disease in cultivars of pepper and tomato susceptible to the pathogen. This is the first reported case of a dicot-infecting Xc pathovar infecting a monocot plant, represented here by a member of the Family Commelinaceae. Laboratory strains of the pathogen that included 81-23, 81-23M13, 82:4, 2595, and P6AD4, known to be pathogenic to pepper and tomato, promoted bacterial spot symptoms on leaves of C. benghalensis L. Of the 63 field isolates recovered from infected C. benghalensis L., 30 gave biochemical and physiological reactions consistent with Xcv pathogens, whereas 10 of the latter promoted bacterial spot disease in the test cultivars resulting in the identification of seven pathogenic races, including P2, P5, P6, P5T1, P5T2, P6T2, and P6T3. Bacterial spot disease symptoms developed on stems only when C. benghalensis L. was spray-inoculated with strains 81-23, 81-23M13, and P6AD4. Bacterial concentration increased in planta by as much as 103 per lesion of the leaf, whereas growth of the same strains was restricted in the stem of this weed. Growth of these three strains was, however, significantly (P ≤ 0.05) lower on NYGA amended with C. benghalensis L. stem extract than on NYGA amended with leaf extract. The ability of the bacterial spot pathogen to infect the stem of C. benghalensis L. has serious implications for management of bacterial spot disease in fields populated with this weed since stems of this plant infected with the pathogen continue to grow vegetatively and disperse throughout all fields in which it is found.


Author(s):  
Qiufeng Wu ◽  
Miaomiao Ji ◽  
Zhao Deng

Pepper bacterial spot disease caused by Xanthomonas campestris is the most common pepper bacterial disease, which ultimately reduces productivity and quality of products. This work uses deep convolutional neural networks (CNNs) to serve fine-grained pepper bacterial spot disease severity classification tasks. The pepper bacterial spot disease leaf images collected from the PlantVillage dataset are further annotated by botanists and split into healthy samples (label1), general samples (label2), and serious samples (label3). To extract more effective and discriminative features, an integrated neural network denoted as MultiModel_VGR is proposed for automatic detection and severity assessment of pepper bacterial spot disease, which is based on three powerful and popular deep learning architectures, namely VGGNet, GoogLeNet and ResNet. Compared with state-of-the-art single CNN architectures and binary-integrated MultiModels, MultiModel_VGR yields the best overall accuracy of 95.34% on the hold-out test dataset, which may have great potential in crop disease control for modern agriculture.


2006 ◽  
Vol 29 (1) ◽  
pp. 85-86 ◽  
Author(s):  
Jeffrey B. Jones ◽  
George H. Lacy ◽  
Hacene Bouzar ◽  
Robert E. Stall ◽  
Norman W. Schaad

2014 ◽  
Vol 14 (64) ◽  
pp. 8998-9015
Author(s):  
K Misrak ◽  
◽  
A Amare ◽  
N Dechassa N Dechassa

Soil -borne plant pathogens cause heavy losses to all major crops, leading to reductions in both yield and quality. Soil solarisation and bio- fumigation offer disease management options that are safe and reduce the use of pesticides for soil -borne plant pathogens. Mustard plant releases antimicrobial hydrolysis products, notably isothiocyanates when used as a bio- fumigant. Bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria (Xcv) can survive in soil and plant debris, which serve as a primary inoculum for infecting the next tomato crop. An experiment was carried out with the objective of evaluating effects of soil solarisation and the use of Ethiopian mustard ( Brassica carinata A. Braun) as a bio -fumigant to control bacterial spot disease and on yield of tomato. The tr eatments consisted of six types of potted soil medium (solarised at Haramaya and Dire Dawa, bio -fumigated, biofumigated as well as solarised at Haramaya and Dire Dawa, and untreated control as non- solarised non- biofumigated pots). Treated tomato seeds were planted and fruit yields were compared among treatments. Potted soil was inoculated with the pathogen, Xcv, belonging to T2P2 race group. The total microbial and Xcv counts were done before as well as after setting up the experiment. The results revealed that solarisation reduced the population of Xcv from 10.68 to 8.79 CFU g -1 , total bacterial population from 11.27 to 9.86 CFU g -1 , and total actinomycete counts from 11.69 to 9.44 CFU g -1 while bio -fumigation had a non- significant effect on Xcv and total microbial counts. None of the treatments exhibited a significant effect on fungal counts. The fruit yield of tomato grown on biofumigated as well as solarised soil was the highest (91.18 t ha -1 ) as compared to the other treatments. It can, therefore, be con cluded that solarisation and bio- fumigation cannot be used as a bio- rational option for effective management of Xcv on tomato but the two methods could be used to increase tomato yield in the presence of the pathogen.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 600
Author(s):  
Hillary Righini ◽  
Ornella Francioso ◽  
Michele Di Foggia ◽  
Antera Martel Quintana ◽  
Roberta Roberti

Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose–response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.


2015 ◽  
Vol 463 (4) ◽  
pp. 746-750 ◽  
Author(s):  
Tian Wei ◽  
Luyao Wang ◽  
Xiaosi Zhou ◽  
Xiuyan Ren ◽  
Xiangqun Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document