scholarly journals Preliminary Study on the Activity of Phycobiliproteins against Botrytis cinerea

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 600
Author(s):  
Hillary Righini ◽  
Ornella Francioso ◽  
Michele Di Foggia ◽  
Antera Martel Quintana ◽  
Roberta Roberti

Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose–response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 210
Author(s):  
Hillary Righini ◽  
Ornella Francioso ◽  
Michele Di Foggia ◽  
Antera Martel Quintana ◽  
Roberta Roberti

Cyanobacteria are oxygenic phototrophs that have an essential role in soil N2 fixation, fertility, and water retention. Cyanobacteria are also natural sources of bioactive metabolites beneficial to improve plant vigor and potentially active against fungal plant pathogens. Therefore, we studied the antifungal activity of water extract (WE) and phycobiliproteins (PBPs) from Anabaena minutissima strain BEA 0300B against the fungal plant pathogen Botrytis cinerea on tomato fruits and in vitro. The water extract and PBPs were characterized by using FT-IR and FT-Raman spectroscopies. Both water extract (5 mg/mL) and PBPs (ranged from 0.3 to 4.8 mg/mL) reduced disease incidence and disease severity on tomato fruits and mycelium growth and colony forming units in vitro. For mycelium growth, a linear PBP dose-response was found. Tomato fruits were also characterized by FT-IR and FT-Raman spectroscopies in order to evaluate structural modifications induced by pathogen and PBP treatment. PBPs preserved cutin and pectin structures by pathogen challenge. In conclusion, A. minutissima can be considered a potential tool for future large-scale experiments for plant disease control.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.


1993 ◽  
Author(s):  
Martin B. Dickman ◽  
Oded Yarden

Spore germination is a common and fundamental event in fungal development and in many instances an essential phase of fungal infection and dissemination. Spore germination is also critical for hyperparasites to function as biocontrol agents as well as in fermentation proceses. Our common objective is to understand the mechanisms which regulated spore germination and identify factors involved in pathogenicity related prepenetration development. Our approach is to exploit the overall similarity among filamentous fungi using both a plant pathogen (Colletotricum trifolii) and a model system that is genetically sophisticated (Neurospora crassa). The simulataneous use of two organisms has the advantage of the available tools in Neurospora to rapidly advance the functional analysis of genes involved in spore germination and development of an economically important fungal phytopathogen. Towards this we have isolated a protein kinase gene from C. trifolii (TB3) that is maximally expressed during the first hour of conidial germination and prior to any visible gene tube formation. Based on sequence similarities with other organisms, this gene is likely to be involved in the proliferative response in the fungus. In addition, TB3 was able to functionally complement a N. crassa mutant (COT-1). Pharmacological studies indicated the importance of calmodulin in both germination and appressorium differentiation. Using an antisense vector from N. crassa, direct inhibition of calmodulin results in prevention of differentiation as well as pathogenicity. Both cAMP dependent protein kinase (PKA) and protein kinase C (PKC) like genes have been cloned from C. trifolii. Biochemical inhibition of PKA prevents germination; biochemical inhibitors of PKC prevents appressorium differentiation. In order to analyze reversible phosphorylation as a regulatory mechanism, some ser.thr dephosphorylative events have also been analyzed. Type 2A and Type 2B (calcineurin) phosphatases have been identified and structurally and functionally analyzed in N. crassa during this project. Both phosphatases are essential for hyphal growth and maintenance of proper hyphal architecture. In addition, a first novel-type (PPT/PP5-like) ser/thr phosphatase has been identified in a filamentous fungus. The highly collaborative project has improved our understanding of a fundamental process in fungi, and has identified targets which can be used to develop new approaches for control of fungal plant pathogens as well as improve the performance of beneficial fungi in the field and in industry. In addition, the feasibility of molecular technology transfer in comparative mycology has been demonstrated.


2006 ◽  
Vol 52 (10) ◽  
pp. 915-923 ◽  
Author(s):  
P A Abbasi ◽  
G Lazarovits

Acidic electrolyzed water (AEW), known to have germicidal activity, was obtained after electrolysis of 0.045% aqueous solution of sodium chloride. Freshly prepared AEW (pH 2.3–2.6, oxidation–reduction potential 1007–1025 mV, and free active chlorine concentration 27–35 ppm) was tested in vitro and (or) on tomato foliage and seed surfaces for its effects on the viability of plant pathogen propagules that could be potential seed contaminants. Foliar sprays of AEW were tested against bacterial spot disease of tomato under greenhouse and field conditions. The viability of propagules of Xanthomonas campestris pv. vesicatoria (bacterial spot pathogen), Streptomyces scabies (potato scab pathogen), and Fusarium oxysporum f.sp. lycopersici (root rot pathogen) was significantly reduced 4–8 log units within 2 min of exposure to AEW. Immersion of tomato seed from infected fruit in AEW for 1 and 3 min significantly reduced the populations of X. campestris pv. vesicatoria from the surface of the seed without affecting seed germination. Foliar sprays of AEW reduced X. campestris pv. vesicatoria populations and leaf spot severity on tomato foliage in the greenhouse. In the field, multiple sprays of AEW consistently reduced bacterial spot severity on tomato foliage. Disease incidence and severity was also reduced on fruit, but only in 2003. Fruit yield was either enhanced or not affected by the AEW sprays. These results indicate a potential use of AEW as a seed surface disinfectant or contact bactericide.Key words: electrolyzed oxidizing water, seed disinfectant, foliar sprays, bacterial spot control.


Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1439-1447 ◽  
Author(s):  
Patrick D. Collopy ◽  
Richard C. Amey ◽  
Martin J. Sergeant ◽  
Michael P. Challen ◽  
Peter R. Mills ◽  
...  

In plant-pathogenic fungi, the pmk1 mitogen-activated protein kinase (MAPK) signalling pathway plays an essential role in regulating the development of penetration structures and the sensing of host-derived cues, but its role in other pathosystems such as fungal–fungal interactions is less clear. We report the use of a gene disruption strategy to investigate the pmk1-like MAPK, Lf pmk1 in the development of Lecanicillium fungicola (formerly Verticillium fungicola) infection on the cultivated mushroom Agaricus bisporus. Lf pmk1 was isolated using a degenerate PCR-based approach and was shown to be present in a single copy by Southern blot analysis. Quantitative RT-PCR showed the transcript to be fivefold upregulated in cap lesions compared with pure culture. Agrobacterium-mediated targeted disruption was used to delete a central portion of the Lf pmk1 gene. The resulting mutants showed normal symptom development as assessed by A. bisporus mushroom cap assays, sporulation patterns were normal and there were no apparent changes in overall growth rates. Our results indicate that, unlike the situation in fungal–plant pathogens, the pmk1-like MAPK pathway is not required for virulence in the fungal–fungal interaction between the L. fungicola pathogen and A. bisporus host. This observation may be of wider significance in other fungal–fungal and/or fungal–invertebrate interactions.


2020 ◽  
Author(s):  
Osakina Aron ◽  
Min Wang ◽  
Anjago Wilfred Mabeche ◽  
Batool Wajjiha ◽  
Shuai Yang ◽  
...  

AbstractArginine is an important amino acid involved in processes such as cell signal transduction, protein synthesis, and sexual reproduction. To understand the biological roles of arginine biosynthesis in pathogenic fungi, we used Cpa1, the carbamoyl phosphate synthase arginine-specific small chain subunit in Saccharomyces cerevisiae as a query to identify its ortholog in Magnaporthe oryzae genome database and named it MoCpa1. MoCpa1 is a 471-amino acid protein containing the CPSase_sm_chain domain and the GATase domain. MoCpa1 transcripts were highly expressed at the conidiation, early-infection, and late-infection stages of the fungus. Targeted deletion of MoCPA1 gene resulted in the ΔMocpa1 mutant exhibiting arginine auxotrophy on MM, confirming its role in de novo arginine biosynthesis. The ΔMocpa1 mutant presented significantly decreased sporulation with some of its conidia being defective in morphology. Furthermore, the ΔMocpa1 mutant was nonpathogenic on rice and barley leaves, which was a result of defects in appressorium-mediated penetration and restricted invasive hyphal growth within host cells. Addition of exogenous arginine partially rescued conidiation and pathogenicity defects on the barley and rice leaves, while introduction of MoCPA1 gene in ΔMocpa1 mutant fully complemented the lost phenotype. Further confocal microscopy examination revealed that MoCpa1 is localized in the mitochondria. In summary, our results demonstrate that MoCpa1-mediated arginine biosynthesis is crucial for fungal development, conidiation, appressorium formation and infection-related morphogenesis in M. oryzae, thus serving as an attractive target for mitigating obstinate fungal plant pathogens.


2019 ◽  
Author(s):  
Mark Angelo O. Balendres ◽  
Fe M. Dela Cueva

AbstractCymbopogon species are among the most reported essential oils with fungitoxic effect. In this study, mycelial growth of Fusarium oxysporum (banana wilt), Colletotrichum gloeosporioides (mango anthracnose), C. falcatum (sugarcane red rot) and Neopestalotiopsis spp. (mango leaf spot) as influenced by varying concentrations of citronella essential oil (CEO) was assessed in in vitro assays. Following growth inhibition test, spore germination and germ tube elongation of C. gloeosporioides were then examined. Mycelial growth of all test fungal pathogens was strongly inhibited by CEO, but variations were observed among fungal species. This growth inhibition activity was caused by the inhibition of spore germination and germ tube elongation as observed in C. gloeosporioides. The findings of this study show the strong growth-inhibitory activity of CEO to multiple fungal pathogens, indicating CEO’s potential as a chemical control approach against these fungal pathogens. Glasshouse and field experiments would establish CEO as one potential alternative to fungicides.


Author(s):  
Ahmed A. Abdulrraziq ◽  
Sami M. Salih ◽  
Sultan F. Alnomasy ◽  
Ziyad M. Aldosari ◽  
Bader S. Alotaibi

Arum cyreniacum is an important member of the family of Araceae because of its bio-activities. Hence this work aimed to establish a link between Arum cyreniacum and its uses as bio-control against plant pathogenic fungi which had never hitherto been established. This work was carried out to evaluate the activity of the aqueous extracts of tubers, leaves, and flowers of Arum cyreniacum against three different types of pathogenic fungi, Fusarium solani, Rhizopus microspores and Aspergillus niger. The antifungal activity of the aqueous extracts of Arum cyreniacum was determined by poisoned food technique. The results showed that Arum cyreniacum had an inhibitory effect in a dose-dependent manner on Fusarium solani, Rhizopus microspores, while Aspergillus niger was resistant to all extracts. However, the great inhibition activity against tested fungi was associated with increasing concentrations of the aqueous extracts of Arum cyreniacum. Data in this work indicated that the use of Arum cyreniacum could be a valid alternative for bio-control of plant pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document