Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil

2008 ◽  
Vol 54 (5) ◽  
pp. 371-379 ◽  
Author(s):  
Cesare Accinelli ◽  
H.K. Abbas ◽  
R.M. Zablotowicz ◽  
J.R. Wilkinson

The carcinogen aflatoxin B1 (AFB1) produced by Aspergillus flavus is a major food safety concern in crops. However, information on AFB1 occurrence in soil and crop residue is scarce. A series of experiments investigated the occurrence of AFB1 in soil and corn residues and ascertained the ecology of A. flavus in a Dundee silt loam soil. Samples of untilled soil (0–2 cm) and residues were collected in March 2007 from plots previously planted with a corn isoline containing the Bacillus thuringiensis (Bt) endotoxin gene or the parental non-Bt isoline. AFB1 levels were significantly different in various corn residues. The highest AFB1 levels were observed in cobs containing grain, with 145 and 275 ng·g–1in Bt and non-Bt, respectively (P ≥ F = 0.001). Aflatoxin levels averaged 3.3 and 9.6 ng·g–1in leaves and (or) stalks and cobs without grain, respectively. All soils had AFB1 ranging from 0.6 to 5.5 ng·g–1with similar levels in plots from Bt and non-Bt corn. Based on cultural methods, soil contained from log103.1 to 4.5 A. flavus cfu·g–1with about 60% of isolates producing aflatoxin. Laboratory experiments demonstrated that AFB1 is rapidly degraded in soil at 28 °C (half-life ≤ 5 days). The potential of the soil A. flavus to produce aflatoxins was confirmed by molecular methods. Transcription of 5 aflatoxin biosynthesis genes, including aflD, aflG, aflP, aflR, and aflS, were detected by reverse transcription – polymerase chain reaction analysis in soil. Although AFB1 appears to be transient in soils, it is clear that AFB1 is produced in surface soil in the presence of corn residues, as indicated by A. flavus cfu levels, AFB1 detection, and expression of aflatoxin biosynthetic genes.

2018 ◽  
Vol 6 (4) ◽  
pp. 600-605 ◽  
Author(s):  
Mohamed Mahmoud Deabes ◽  
Wagdy Khalil Bassaly Khalil ◽  
Ashraf Gamil Attallah ◽  
Tarek Ahmed El-Desouky ◽  
Khayria Mahmoud Naguib

AIM: In this study, we evaluated the effect of silver nanoparticles (AgNPs) on the production of aflatoxin B1 (AFB1) through assessment the transcription activity of aflatoxin biosynthesis pathway genes in Aspergillus flavus ATCC28542.MATERIAL AND METHODS: The mRNAs were quantitative by Real Time-polymerase chain reaction (qRT-PCR) of A. flavus grown in yeast extract sucrose (YES) medium containing AgNPs. Specific primers that are involved in the AFB1 biosynthesis which highly specific to A. flavus, O-methyltransferase gene (omt-A), were designed and used to detect the fungus activity by quantitative PCR assay. The AFB1 production (from A. flavus growth) which effected by AgNPs were measured in YES medium by high-pressure liquid chromatography (HPLC).RESULTS: The AFB1 produced by A. flavus have the highest reduction with 1.5 mg -100 ml of AgNPs were added in media those records 88.2%, 67.7% and 83.5% reduction by using AgNP HA1N, AgNP HA2N and AgNP EH, respectively. While on mycelial growth give significantly inhibitory effect. These results have been confirmed by qRT-PCR which showed that culture of A. flavus with the presence of AgNPs reduced the expression levels of omt-A gene.CONCLUSION: Based on the results of the present study, AgNPs inhibit growth and AFB1 produced by Aspergillus flavus ATCC28542. This was confirmed through RT-PCR approach showing the effect of AgNPs on omt-A gene involved in aflatoxin biosynthesis.


2021 ◽  
Author(s):  
Chhavi Thakur ◽  
Amanjot Singh Malhotra ◽  
Jata Shankar*

Abstract Aspergillus flavus is known for producing the potent carcinogenic agent aflatoxin. Food contamination with aflatoxins is an important safety concern for agricultural yields. To identify and develop anti-aflatoxigenic agents, studies on phytochemicals as anti-aflatoxigenic agents have been documented including gallic acid. Thus, interaction studies using in-silico tools have been explored to understand the molecular mechanism behind inhibition of aflatoxin biosynthesis by studying the chemical interactions of gallic acid with polyketide synthase A (PksA) of A. flavus. The 3D structure of PksA consisting of seven domains was modeled using a Swiss-Model server followed by docking using Autodock tools-1.5.6 with substrate hexanoic acid and with that to gallic acid. The binding energy (electrostatic, inter-molecular or total internal energy) for gallic acid was lower (-6.09 to -4.79 kcal/mol) in comparison to hexanoic acid (-5.05 to -3.36 kcal/mol). During an interaction with the acyl transferase domain of PksA, both ligands showed H-bond formation at Glu36, Arg8, Thr11 positions. Ligplot analysis showed the formation of 7-H bonds in gallic acid and 3-H bonds in hexanoic acid. In addition, gallic acid showed stable binding with the active site of PksA indicated by steady root mean square deviation through molecular dynamic simulations. The chemistry between gallic acid and polyketide synthase A(PksA) exhibited that Gallic Acid possesses the highest level of binding potential (more number of hydrogen bonds) with PksA domain in comparison to hexanoic acid, a precursor for aflatoxin biosynthesis. Thus, we suggest enzymes from the aflatoxin biosynthetic pathway in aflatoxin-producing Aspergilli could be an important target for potential inhibitors.


2018 ◽  
Vol 115 ◽  
pp. 41-51 ◽  
Author(s):  
Opemipo Esther Fasoyin ◽  
Bin Wang ◽  
Mengguang Qiu ◽  
Xiaoyun Han ◽  
Kuang-Ren Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document