Some probiotic properties of chicken lactobacilli

1999 ◽  
Vol 45 (12) ◽  
pp. 981-987 ◽  
Author(s):  
Carlos Gusils ◽  
Silvia N González ◽  
G Oliver

The beneficial effect of lactobacilli has been attributed to their ability to colonize human and animal gastrointestinal tracts. In this work, adhesion assays with three lactobacillus strains and intestinal fragments obtained from chickens were assessed. Lactobacillus animalis and L. fermentum were able to adhere to three kinds of epithelial cells (crop, small and large intestines) with predominance to small intestine. Among the strains considered, L. fermentum subsp. cellobiosus showed the lowest and L. animalis the highest adhesion ability. Scanning electron microphotographs showing L. animalis and L. fermentum adhering to intestinal cells were obtained. The characterization of L. animalis adhesion indicated that lectin-like structure of this strain has glucose/mannose as specific sugars of binding. However, a calcium requirement was not observed. The adhesion of L. fermentum was reduced by addition of sialic acid or mannose (P < 0.01). These carbohydrates can be involved in the interaction between adhesin and epithelial surface. In this case, the dependence on bivalent cations was demonstrated. Lactobacillus fermentum was effective in reducing the attachment of Salmonella pullorum by 77%, while L. animalis was able to inhibit (90%, 88%, and 78%) the adhesion of S. pullorum, S. enteritidis, and S. gallinarum to host-specific epithelial fragments respectively. Our results from this in vitro model suggest that these lactobacilli are able to block the binding sites for Salmonella adhesion.Key words: lactobacilli, lectin-like structures, poultry adhesion, probiotic properties.

Author(s):  
Mathieu Vinken ◽  
Michaël Maes ◽  
Sara Crespo Yanguas ◽  
Joost Willebrords ◽  
Tamara Vanhaecke ◽  
...  

2021 ◽  
Vol 350 ◽  
pp. S129-S130
Author(s):  
R Magny ◽  
K. Kessal ◽  
A. Regazzetti ◽  
O. Laprévote ◽  
C. Baudouin ◽  
...  

2009 ◽  
Vol 59 (3) ◽  
pp. 485-491 ◽  
Author(s):  
Başar Uymaz ◽  
Ömer Şimşek ◽  
Nefise Akkoç ◽  
Haluk Ataoğlu ◽  
Mustafa Akçelik

2016 ◽  
Vol 133 ◽  
pp. 100-112 ◽  
Author(s):  
Victor Llombart ◽  
Teresa García-Berrocoso ◽  
Joan Josep Bech-Serra ◽  
Alba Simats ◽  
Alejandro Bustamante ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1002-1007
Author(s):  
Sarah Johnson ◽  
Ray McCarthy ◽  
Brian Fahy ◽  
Oana Madalina Mereuta ◽  
Seán Fitzgerald ◽  
...  

​BackgroundCalcified cerebral emboli (CCEs) are a rare cause of acute ischemic stroke (AIS) and are frequently associated with poor outcomes. The presence of dense calcified material enables reliable identification of CCEs using non-contrast CT. However, recanalization rates with the available mechanical thrombectomy (MT) devices remain low.ObjectiveTo recreate a large vessel occlusion involving a CCE using an in vitro silicone model of the intracranial vessels and to demonstrate the feasability of this model to test different endovascular strategies to recanalize an occlusion of the M1 segment of the middle cerebral artery (MCA).​MethodsAn in vitro model was developed to evaluate different endovascular treatment approaches using contemporary devices in the M1 segment of the MCA. The in vitro model consisted of a CCE analog placed in a silicone neurovascular model. Development of an appropriate CCE analog was based on characterization of human calcified tissues that represent likely sources of CCEs. Feasibility of the model was demonstrated in a small number of MT devices using four common procedural techniques.​ResultsCCE analogs were developed with similar mechanical behavior to that of ex vivo calcified material. The in vitro model was evaluated with various MT techniques and devices to show feasibility of the model. In this limited evaluation, the most successful retrieval approach was performed with a stent retriever combined with local aspiration through a distal access catheter, and importantly, with flow arrest and dual aspiration using a balloon guide catheter.​ConclusionCharacterization of calcified tissues, which are likely sources of CCEs, has shown that CCEs are considerably stiffer than thrombus. This highlights the need for a different in vitro AIS model for CCEs than those used for thromboemboli. Consequentially, an in vitro AIS model representative of a CCE occlusion in the M1 segment of the MCA has been developed.


2019 ◽  
Vol 30 (3) ◽  
pp. 229-241 ◽  
Author(s):  
Patricia Bermejo ◽  
María Carmen Sánchez ◽  
Arancha Llama‐Palacios ◽  
Elena Figuero ◽  
David Herrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document