Using disaggregation to link individual-tree and whole-stand growth models

2006 ◽  
Vol 36 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Jianhua Qin ◽  
Quang V Cao

Data from 200 plots randomly selected from the Southwide Pine Seed Source Study of loblolly pine (Pinus taeda L.) were used to fit whole-stand and individual-tree equations. Another 100 plots, also randomly selected, were used for validation. Outputs from the individual-tree model were then adjusted to match observed stand attributes (number of trees, basal area, and volume per hectare) by four disaggregation methods: proportional yield, proportional growth, constrained least squares, and coefficient adjustment. The first three are existing methods, and the fourth is new. The four methods produced similar results, and the coefficient adjustment was then selected as the method to disaggregate predicted stand growth among trees in the tree list. Results showed that, compared to the unadjusted individual tree model, the adjusted tree model performed much better in predicting stand attributes, while providing comparable predictions of tree diameter, height, and survival probability. The proposed approach showed promise in the ongoing effort to link growth models having different resolutions.

1979 ◽  
Vol 9 (2) ◽  
pp. 231-244 ◽  
Author(s):  
Alan R. Ek ◽  
Robert A. Monserud

A distance-dependent individual tree based growth model (FOREST) was compared with a diameter-class growth model (SHAF) for describing changes in stand density and structure. Projections of Lake States' northern hardwood stand development were made by each model for 5–26 years over a range of stand conditions and harvest treatments. Results from numerous performance tests and comparisons of actual and predicted diameter distributions, basal areas, and numbers of trees, indicate the individual tree model was considerably more sensitive to harvest treatments and reproduction response than the diameter-class model. Conversely, the latter was much less expensive to operate. Prediction of species and individual tree growth with the individual tree model appeared to provide sensitivity nearly equal to that observed for predictions of the stand as a whole. Long-term projections (120 years) for reserve (no cut) and clear-cut stand conditions further suggest the potential and limitations of the models for management analyses.


1996 ◽  
Vol 20 (1) ◽  
pp. 15-22 ◽  
Author(s):  
James S. Shortt ◽  
Harold E. Burkhart

Abstract Four different loblolly pine growth and yield models were evaluated for the purpose of updating forest inventory data. The types of growth and yield models examined were: a whole stand, a diameter distribution-parameter prediction, a diameter distribution-parameter recovery, and an individual tree model. Three different approaches were used to create fitting and validation data sets from permanent plot remeasurement data; each of the four growth and yield models was evaluated at varying projection periods. The periods used were 0, 3, 6, and 9 yr. Evaluations were based solely on the capability of each model to predict merchantable volume. In terms of root mean square error of prediction, the individual tree and whole stand models performed better than the diameter distribution models. At shorter projection periods, the individual tree model performed better than the whole stand model, but the whole stand approach was superior at the 9 yr period. Of the diameter distribution models, the parameter recovery model performed better for shorter periods than the parameter prediction model, but this difference diminished with longer periods. South. J. Appl. For. 20(1):15-22.


ISRN Forestry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Edward Missanjo ◽  
Gift Kamanga-Thole ◽  
Vidah Manda

Genetic and phenotypic parameters for height, diameter at breast height (dbh), and volume were estimated for Pinus kesiya Royle ex Gordon clonal seed orchard in Malawi using an ASReml program, fitting an individual tree model. The data were from 88 clones assessed at 18, 23, 30, 35, and 40 years of age. Heritability estimates for height, dbh, and volume were moderate to high ranging from 0.19 to 0.54, from 0.14 to 0.53, and from 0.20 to 0.59, respectively, suggesting a strong genetic control of the traits at the individual level, among families, and within families. The genetic and phenotypic correlations between the growth traits were significantly high and ranged from 0.69 to 0.97 and from 0.60 to 0.95, respectively. This suggests the possibility of indirect selection in trait with direct selection in another trait. The predicted genetic gains showed that the optimal rotational age of the Pinus kesiya clonal seed orchard is 30 years; therefore, it is recommended to establish a new Pinus kesiya clonal seed orchard. However, selective harvest of clones with high breeding values in the old seed orchard should be considered so that the best parents in the old orchard can continue to contribute until the new orchard is well established.


2016 ◽  
Vol 40 (3) ◽  
pp. 298-304 ◽  
Author(s):  
José Roberto Soares Scolforo ◽  
Thiza Falqueto Altoe ◽  
Henrique Ferraco Scolforo ◽  
Jose Marcio de Mello ◽  
Charles Plinio Castro e Silva ◽  
...  

ABSTRACT Eremanthus erythropappus, commonly known as candeia, is an income-generating tree native to Brazil. This is due to the high durability of its wood and its essential oil containing the active component alpha bisabolol. Despite this economic potential, until the early 2000's no studies existed to explore the sustainable management in areas in which the species naturally occurs or for establishing commercial plantations. This study proposes new management strategies based on an individual tree model, and evaluates the growth behavior of candeia trees planted in different spacing. The experiment was installed in March 2002, in Carrancas municipality, Minas Gerais state, Brazil. The experimental area was divided into 4 blocks with 4 different spacings as treatments. The individual model used to propose the best management system uses development of crown area as a function of DBH. The results showed that candeia trees were sensitive to initial spacing variation. With increased initial spacing, candeia trees reached competition later, as demonstrated by crown area development. Thus, candeia trees planted at a wider spacing maintain a desirable growth rate without need for thinning for a longer time, compared to trees planted at narrower spacing. The fitted individual tree model presented in this study showed consistent results and flexibility, providing alternatives for different management strategies. The best growth response was obtained for planting densities greater than 3.75 m² per tree, which corresponds to a spacing of 1.5 x 2.5 m.


1991 ◽  
Vol 15 (1) ◽  
pp. 22-27
Author(s):  
Terry R. Clason

Abstract A hardwood suppression treatment applied to a 7-year-old, loblolly pine (Pinus taeda L.) plantation enhanced projected productivity through a 35-year rotation that included three commercial thinnings. By age 22, growth data showed that hardwood removal treatments had larger pines and smaller hardwoods than check treatments. Fifteen-year pine basal area and merchantable volume growth on hardwood removal plots exceeded the check plots by 25 and 27%. Projected growth between ages 22 and 35 indicated that 28 years after early hardwood removal thinned plantation merchantable volume yields improved by 840 ft³ per acre. South. J. Appl. For. 15(1):22-27.


1998 ◽  
Vol 28 (9) ◽  
pp. 1344-1351 ◽  
Author(s):  
Hubert Sterba ◽  
Ralph L Amateis

Crown efficiency was first defined by Assmann (1961. Waldertragskunde. BLV, München) as individual tree volume increment per unit of crown projection area. He hypothesized that within a given crown class, smaller crowns are more efficient because their ratio between crown surface and horizontal crown projection is higher. Data from a loblolly pine (Pinus taeda L.) spacing experiment were used to test if this hypothesis also holds in young loblolly pine stands and, if so, to determine if it explains the increment differences between spacings in the spacing experiment. Using individual tree height relative to plot dominant height to describe crown class, within-plot regression showed that crown efficiency decreased with crown size for trees below dominant height. This relationship was much less pronounced than indicated from Assmann's examples, although the crown surface to crown projection ratio behaved in the same way as Assmann had hypothesized. Crown efficiency as well as the crown surface to crown projection area ratio decreased with increasing density. Basal area increment per hectare increased until total crown closure approached 130% and then stayed constant. This major impact of total crown coverage brings into question the usefullness of crown efficiency as an indicator for unit area growth.


1996 ◽  
Vol 20 (4) ◽  
pp. 188-193 ◽  
Author(s):  
James C. Fortson ◽  
Barry D. Shiver ◽  
Lois Shackelford

Abstract A series of paired plots was installed in loblolly pine plantations at 42 locations in Georgia's Piedmont and Alabama's Piedmont and Coastal Plain. One plot of each pair had all competing vegetation eliminated. The other plot was left as an uncontrolled check. Locations were stratified over two age classes (5-9 and 12-16 yr old) and three slope positions (top, midslope, and bottom). Analysis of 33 surviving locations 8 yr after treatment revealed a positive treatment effect for both individual tree (dbh and total height) and stand characteristics (basal area per acre, total volume per acre, and merchantable volume per acre). There was no difference in volume response between age classes. Slope position was not significant for the individual tree variables, but was significant for the stand variables, with midslopes responding most positively followed by bottom and then top slope positions. Over all locations, the average treatment response was approximately ½ cord/ac/yr. Economic analyses indicate that the magnitude of the response will be economical for many stumpage prices, particularly on midslope and bottom slope positions, in plantations where access and species composition make herbicide spraying possible. South J. Appl. For. 20(4):188-192.


2020 ◽  
Vol 66 (5) ◽  
pp. 623-633
Author(s):  
Y H Weng ◽  
J Grogan ◽  
D W Coble

Abstract Growth response to thinning has long been a research topic of interest in forest science. This study presents the first 3–4 years of response of loblolly pine (Pinus taeda L.) growth to thinning at different intensities. Data were collected from the East Texas Pine Research Project’s region-wide loblolly pine thinning study, which covers a wide variety of stand conditions. Four treatments, light, moderate, and heavy thinning, respectively having 370, 555, and 740 residual trees per hectare after thinning, and an unthinned control, were included. Individual tree diameter at breast height (dbh) and total height were recorded annually for the first 3–4 years after thinning. Results indicate significant differences between treatments in dbh growth in each year after thinning, as well as for all years combined. Each thinning treatment had significantly greater dbh growth than the control in the first growing season with this positive response being more evident in the case of the heavier thinning or at the later years post-thinning. Conversely, the thinning effect on tree height growth was initially negligibly negative, then becoming positive after 2–4 years, with the heavier thinning becoming positive sooner. Tree size class, assigned based on prethinning dbh, had a significant effect on both dbh and height growth responses. Compared to the control, small trees had a greater response both in dbh and in height growth than the medium and large trees over the measurement period. At the stand level, the heavier thinning had significantly less stand basal area per hectare, but the difference in stand basal area per hectare between the thinned and the unthinned plots decreased with years post-thinning. Results from this study can improve our understanding in thinning effects and help forest managers make accurate decisions on silvicultural regimes.


2007 ◽  
Vol 37 (1) ◽  
pp. 188-194 ◽  
Author(s):  
Jianhua Qin ◽  
Quang V Cao ◽  
David C Blouin

Three approaches to characterizing the diameter distribution of a future stand are presented. The first approach is the "parameter-recovery" method, which links a whole-stand model to a diameter-distribution model. The next two approaches provide linkages between an individual-tree model and a diameter-distribution model. Tree-survival and diameter-growth equations were applied to the tree list (the "tree-projection" method) or to the diameter distribution (the "distribution-projection" method) at the beginning of the growth period. A numerical example of Weibull distributions that characterized diameter data from the Southwide Seed Source Study of loblolly pine (Pinus taeda L.) is presented. All three methods produced similar results in terms of Reynolds et al.'s (1988) error indices, whereas the distribution-projection method outperformed the other two methods in predicting total and merchantable volumes per hectare. This study demonstrated that the diameter-distribution model could be linked to either a whole-stand model or an individual-tree model with comparable success.


2008 ◽  
Vol 35 (10) ◽  
pp. 964 ◽  
Author(s):  
Risto Sievänen ◽  
Jari Perttunen ◽  
Eero Nikinmaa ◽  
Pekka Kaitaniemi

Functional–structural plant growth models (FSPMs) combine the description of the structure of plants and the resource acquisition and partitioning at a detailed architectural level. They offer a means to study tree and stand development on the basis of a structurally accurate description that combines resource capture at the same level of detail. We describe here how a ‘shoot-based’ individual tree model, LIGNUM of Scots pine (Pinus sylvestris L.) has been applied to a group of identical trees (forest). The model has been applied to isolated trees and saplings growing in forest gaps. First, we present the LIGNUM model and the changes necessary for simulation of a forest instead of individual trees. LIGNUM derives tree growth on the basis of a process-based model of tree carbon balance and the architectural development of the 3-D tree crown. The time step is 1 year. We realised the forest as consisting of individual Scots pine trees on a plot 17 × 17 m, but simplified the stand description by simulating the growth of only one tree in the middle of the plot and assumed that the other trees were identical to it at all times. The model produced results that are comparable with observations made in real Scots pine trees and tree stands in Finland. The simulations with variable values of the parameters controlling the foliage–sapwood relationship, amount of sapwood required below a point in a branch or a stem, and the senescence of sapwood showed how growth declines when the sapwood requirement in the branches and stem was high. In this case, the proportion of resources allocated to the needles became small and the needle mass was low.


Sign in / Sign up

Export Citation Format

Share Document