Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits

2008 ◽  
Vol 38 (6) ◽  
pp. 1536-1546 ◽  
Author(s):  
Nicholas K. Ukrainetz ◽  
Kyu-Young Kang ◽  
Sally N. Aitken ◽  
Michael Stoehr ◽  
Shawn D. Mansfield

Genetic control and relationships among coastal Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco var. menziesii) growth and wood quality traits were assessed by estimating heritability and phenotypic and genetic correlations using 600 trees representing 15 full-sib families sampled from four progeny test sites. Heritability estimates ranged from 0.23 to 0.30 for growth traits, 0.19 for fibre coarseness, from 0.21 to 0.54 for wood density, from 0.16 to 0.97 for cell wall carbohydrates, and 0.79 and 0.91 for lignin content at two sites, Squamish River and Gold River, respectively. Glucose content, indicative of cell wall cellulose composition, and lignin were shown to be under strong genetic control, whereas fibre coarseness was shown to be under weak genetic control. Phenotypic correlations revealed that larger trees generally have longer fibres with higher fibre coarseness, lower density, lower carbohydrate content, a greater proportion of cell wall lignin, and higher microfibril angle. Genetic correlations and correlated response to selection suggest that breeding for height growth would result in a reduction in wood quality, whereas breeding for improved earlywood density in Douglas-fir would result in negligible reductions in volume and appears to be an ideal target for selecting for improved wood quality (density) while maintaining growth in the sample population.

2000 ◽  
Vol 30 (5) ◽  
pp. 837-840 ◽  
Author(s):  
T S Anekonda ◽  
W T Adams ◽  
S N Aitken ◽  
D B Neale ◽  
K D Jermstad ◽  
...  

Variation in cold-hardiness traits, and their extent of genetic control and interrelationships, were investigated among individuals (clones) within a single large full-sib family of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) from Oregon. Cold injury to needle, stem, and bud tissues was evaluated in fall 1996 and spring 1997 following artificial freeze testing of detached shoots collected from 4-year-old ramets (rooted cuttings). Variation among clones in cold-injury scores was significant (p < 0.01) for all shoot tissues in both fall and spring and averaged about three times the magnitude previously observed among open-pollinated families of this species. Thus, improving cold hardiness by within-family selection appears to hold much promise. Striking similarities in relative magnitudes of heritability estimates and genetic correlations in the full-sib family, compared with breeding populations, support the following hypotheses about the quantitative genetics of cold hardiness in this species: (i) heritability of cold hardiness (both broad-and-narrow-sense) is stronger in the spring than in the fall; (ii) cold hardiness of different shoot tissues in the same season is controlled by many of the same genes; and (iii) genetic control of fall cold hardiness is largely independent of cold hardiness in the spring.


2022 ◽  
Vol 12 ◽  
Author(s):  
Vincent Colas ◽  
Philippe Barre ◽  
Frederik van Parijs ◽  
Lukas Wolters ◽  
Yannick Quitté ◽  
...  

Perennial ryegrass is an important forage crop in dairy farming, either for grazing or haying purposes. To further optimise the forage use, this study focused on understanding forage digestibility in the two most important cuts of perennial ryegrass, the spring cut at heading and the autumn cut. In a highly diverse collection of 592 Lolium perenne genotypes, the organic matter digestibility (OMD) and underlying traits such as cell wall digestibility (NDFD) and cell wall components (cellulose, hemicellulose, and lignin) were investigated for 2 years. A high genotype × season interaction was found for OMD and NDFD, indicating differences in genetic control of these forage quality traits in spring versus autumn. OMD could be explained by both the quantity of cell wall content (NDF) and the quality of the cell wall content (NDFD). The variability in NDFD in spring was mainly explained by differences in hemicellulose. A 1% increase of the hemicellulose content in the cell wall (HC.NDF) resulted in an increase of 0.81% of NDFD. In autumn, it was mainly explained by the lignin content in the cell wall (ADL.NDF). A 0.1% decrease of ADL.NDF resulted in an increase of 0.41% of NDFD. The seasonal traits were highly heritable and showed a higher variation in autumn versus spring, indicating the potential to select for forage quality in the autumn cut. In a candidate gene association mapping approach, in which 503 genes involved in cell wall biogenesis, plant architecture, and phytohormone biosynthesis and signalling, identified significant quantitative trait loci (QTLs) which could explain from 29 to 52% of the phenotypic variance in the forage quality traits OMD and NDFD, with small effects of each marker taken individually (ranging from 1 to 7%). No identical QTLs were identified between seasons, but within a season, some QTLs were in common between digestibility traits and cell wall composition traits confirming the importance of hemicellulose concentration for spring digestibility and lignin concentration in NDF for autumn digestibility.


2000 ◽  
Vol 30 (5) ◽  
pp. 761-768 ◽  
Author(s):  
R Spicer ◽  
B L Gartner ◽  
R L Darbyshire

Stem sinuosity is thought to negatively impact wood quality, but no studies have characterized its vertical and radial effects on wood properties. Here we study wood quality along the entire stem in 25-year-old plantation-grown Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) trees (32 trees total) that had been scored for sinuosity at age 12. We also study compression wood formation in the radial direction for one internode that had been scored for sinuosity at age 12 and subsequently produced 13 more annual rings. Trees with highly sinuous leaders at age 12 were more likely to be sinuous in other years, and developed more slope of grain defect (approximately 15% log volume) than less sinuous trees, but did not differ in the size of the pith-containing core. Leaders originally scored as highly sinuous developed more compression wood than control trees but only near the pith. Internode length did not differ among sinuosity classes. The size of the pith deviations (radial distance from centreline) remained constant up the stem despite a decline in internode length. However, the frequency of pith deviations was highest at 10-15 years, when internode length reached a peak. The relationship between temporal patterns of growth rate, sinuosity, and tree biomechanics deserves further attention.


2007 ◽  
Vol 37 (11) ◽  
pp. 2164-2174 ◽  
Author(s):  
Brian S. Baltunis ◽  
Harry X. Wu ◽  
Mike B. Powell

A total of 1640 increment cores from 343 radiata pine ( Pinus radiata D. Don) families were sampled at two second-generation progeny trials, aged 6 and 7 years, for a detailed genetic study of juvenile wood quality traits. Density, microfibril angle (MFA), and modulus of elasticity (MOE) were determined from pith to bark using SilviScan® technology. Heritability was greatest for area-weighted density at the two sites (0.63 and 0.77, respectively), and the lowest for growth traits (<0.23). Genotype by environment interaction was low for all three wood quality traits. A positive genetic correlation between density and MOE (0.43), and a highly negative, and therefore, favourable genetic correlation between MFA and MOE (–0.92) were observed, implying that improvement of multiple juvenile wood properties is possible. The genetic correlations between whole-core wood quality traits and individual-ring measurements suggest that improvement for juvenile wood properties across the entire profile of the corewood including the innermost rings can be achieved. However, density, MFA, and MOE had unfavourable genetic correlations with diameter growth suggesting that selection for increased density and MOE, and reduced MFA in the absence of selection for growth will result in a genetic loss for growth rate.


2008 ◽  
Vol 65 (1) ◽  
pp. 102-102 ◽  
Author(s):  
Alejandro G. Martinez Meier ◽  
Leopoldo Sanchez ◽  
Guillermina Salda ◽  
Mario J. M. Pastorino ◽  
Jean-Yves Gautry ◽  
...  

IAWA Journal ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 721-740 ◽  
Author(s):  
Lloyd A. Donaldson ◽  
Adya Singh ◽  
Laura Raymond ◽  
Stefan Hill ◽  
Uwe Schmitt

ABSTRACT Douglas-fir (Pseudotsuga menziesii) has distinctly colored heartwood as a result of extractive deposition during heartwood formation. This is known to affect natural durability and treatability with preservatives, as well as other types of wood modification involving infiltration with chemicals. The distribution of extractives in sapwood and heartwood of Douglas-fir was studied using fluorescence microscopy. Several different types of extractive including flavonoids, resin acids, and tannins were localized to heartwood cell walls, resin canals, and rays, using autofluorescence or staining of flavonoids with Naturstoff A reagent. Extractives were found to infiltrate the cell walls of heartwood tracheids and were also present to a lesser extent in sapwood tracheid cell walls, especially in regions adjacent to the resin canals. Förster resonance energy transfer measurements showed that the accessibility of lignin lining cell wall micropores to rhodamine dye was reduced by about 50%, probably as a result of cell wall-bound tannin-like materials which accumulate in heartwood relative to sapwood, and are responsible for the orange color of the heartwood. These results indicate that micro-distribution of heartwood extractives affects cell wall porosity which is reduced by the accumulation of heartwood extractives in softwood tracheid cell walls.


2019 ◽  
Vol 65 (4) ◽  
pp. 469-482 ◽  
Author(s):  
Trevor D Walker ◽  
Fikret Isik ◽  
Steven E McKeand

AbstractAcoustic time of flight and drill resistance (surrogates for wood stiffness and density, respectively) were measured on 11,097 standing trees from 269 pollen-mix families of loblolly pine (Pinus taeda L.) in 6- to 9-year-old progeny tests at eight sites across the southeastern United States. Specific gravity was measured on two test sites. The phenotypic correlation between specific gravity and drill resistance was moderate (r = 0.68), whereas the genetic correlation was very strong (rg = 0.96). Narrow-sense heritabilities for acoustic time of flight and drill resistance were around 0.35 for individual trees and very strong (0.90) for family means. High genetic correlations (&gt;0.80) between pairs of sites suggested a low genotype-by-environment interaction for both traits. Genetic correlations between wood quality traits and other economic traits (growth and stem straightness) were low except for a moderate correlation between acoustic time of flight and tree slenderness (rg = –0.64). The checklot ranked near the middle for both wood quality traits, implying no inadvertent selection occurred in this population that has been selected intensively for volume productivity. This study is the first to apply these tools in a large breeding program, and results suggest they are effective for selecting genotypes for wood quality.


Sign in / Sign up

Export Citation Format

Share Document