scholarly journals Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage

2012 ◽  
Vol 42 (8) ◽  
pp. 1631-1647 ◽  
Author(s):  
Wesley G. Page ◽  
Michael J. Jenkins ◽  
Justin B. Runyon

During periods with epidemic mountain pine beetle ( Dendroctonus ponderosae Hopkins) populations in lodgepole pine ( Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be quantified. In this study, we quantified and compared fuel moisture, chemistry, and resulting flammability of bark beetle affected foliage in terms of ignitability, combustibility, consumability, and sustainability at a site in far eastern Idaho, USA. Results revealed substantial decreases in moisture content, the proportion of starches and sugars, and crude fat and increases in the proportions of lignin, cellulose, and hemicellulose in foliage of trees attacked in the previous year (yellow foliage) or more than two years previously (red foliage). Increases in emission rates of several terpenes that were correlated with flammability were also detected in yellow foliage. The flammability of fresh yellow and red foliage increased with regard to ignitability and sustainability, with shorter times to ignition, lower temperatures at ignition, and higher heat yields when compared with unattacked green foliage. Our results confirm the overwhelming importance of fuel moisture on flammability and suggest that fuel chemical composition also has significant effects on lodgepole pine foliage flammability.

2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.


2015 ◽  
Vol 61 (1) ◽  
pp. 128-134
Author(s):  
Wesley G. Page ◽  
Michael J. Jenkins ◽  
Martin E. Alexander

1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


Author(s):  
W. Romme ◽  
J. Yavitt ◽  
D. Knight

A research project was initiated in 1980 to study the effects of outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine forest (Pinus contorta Dougl. ssp. latifolia) in Yellowstone National Park and surrounding areas. This native insect apparently has long been associated with lodgepole pine, and reports of small numbers of beetles can be found in Park records as early as 1925. However, in the late 1940's and early 1950's major outbreaks began to occur on the Caribou and Targhee National Forests immediately to the west and southwest of Yellowstone and Grand Teton National Parks. An outbreak in Grand Teton National Park and the adjacent Teton National Forest began in the 1950's, with an explosive increase in 1961 followed by an eventual subsidence in the late 1960's. The first major outbreak in Yellowstone National Park began in the late 1960's in the Bechler and South Entrance areas, reaching a peak there in 1970 and later declining. Yearly aerial surveys conducted thereafter showed a steady northward movement of the outbreak through the western half of the Park at a rate of 1 - 5 km per year. By 1978 the peak outbreak was centered around West Yellowstone, with hundreds of infested trees per hectare. The outbreak is now moving north and east along the Madison and Gibbon Rivers, with the greatest beetle populations currently in the vicinity of Madison Junction.


1961 ◽  
Vol 37 (4) ◽  
pp. 368-375 ◽  
Author(s):  
R. W. Reid

The moisture content of the outer sapwood of non-infested lodgepole pine is normally about 85 to 165 per cent of oven dry weight. In trees that have been infested by the mountain pine beetle for one year, the sapwood moisture content can be as low as 16 per cent. There is a steep moisture gradient from about 160 per cent in the outer sapwood to about 30 per cent in the heart-wood. The moisture content in the centre is slightly higher than in the adjacent wood. In infested trees the sapwood moisture is greatly reduced within a year after the attack but moisture in the heartwood is not altered appreciably. Trees infested early in the season drop to a lower moisture content by fall than trees infested later in the season. In non-infested trees there is a diurnal and a seasonal moisture march; these do not occur in infested trees. The rapid moisture loss in the sapwood of infested trees is associated with blue-stain infection and successful establishment of bark-beetle broods


2009 ◽  
Vol 39 (4) ◽  
pp. 839-848 ◽  
Author(s):  
V.G. Nealis ◽  
M.K. Noseworthy ◽  
R. Turnquist ◽  
V.R. Waring

The effect of removing lodgepole pine ( Pinus contorta Dougl. ex Loud.) and retaining Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) to reduce the risk of disturbance from mountain pine beetle ( Dendroctonus ponderosae Hopk.) in mixed conifer stands in southern British Columbia, Canada, on population processes influencing outbreaks of western spruce budworm ( Choristoneura occidentalis Free.) was evaluated in 10 paired (open vs. closed) field plots. Overall feeding damage to Douglas-fir was significantly, but only slightly, lower in open stands compared with closed stands. Although open plots tended to recruit more budworms, the losses resulting from the dispersal of spring-emerging budworms in search of feeding sites were significantly greater in open plots. The forest management benefits of these early season losses were mitigated, however, by more mortality of budworms from natural enemies, particularly diseases, in the closed plots during the budworm feeding period. These results are discussed in terms of compensating population processes and balancing objectives in forest pest management. In this case, selective harvesting of lodgepole pine as a mitigation strategy for the mountain pine beetle conserved the midterm timber supply potential represented by associated Douglas-fir even in the presence of an outbreak of the western spruce budworm.


1985 ◽  
Vol 117 (11) ◽  
pp. 1445-1446 ◽  
Author(s):  
Charles E. Richmond

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is one of the most destructive bark beetles found on pine in western North America (McCambridge et al. 1979), particularly in forests of lodgepole pine, Pinus contorta Douglas var. latifolia (Furniss and Carolin 1977). The treatment registered in the United States for the protection of high-value trees in residential areas and recreational areas is 2% carbaryl applied to the bole of the tree with a hydraulic sprayer. Recently, pine oil, a derivative of paper pulp waste, was found to be an effective non-insecticidal repellent against several species of bark beetles (Nijholt et al. 1981).


1987 ◽  
Vol 65 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H. S. Whitney ◽  
R. J. Bandoni ◽  
F. Oberwinkler

A new basidiomycete, Entomocorticium dendroctoni Whitn., Band. & Oberw., gen. et sp. nov., is described and illustrated. This cryptic fungus intermingles with blue stain fungi and produces abundant essentially sessile basidiospores in the galleries and pupal chambers of the mountain pine bark beetle (Dendroctonus ponderosae Hopkins Coleoptera: Scolytidae) in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.). The insect apparently disseminates the fungus. Experimentally, young partially insectary reared adult beetles fed E. dendroctoni produced 19% more eggs than beetles fed the blue stain fungi.


1980 ◽  
Vol 112 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Barry G. Hynum ◽  
Alan A. Berryman

AbstractLanding rates as monitored by landing traps indicate that the mountain pine beetle, Dendroctonus ponderosae Hopkins, is not attracted to lodgepole pine, Pinus contorta Dougl., prior to the first gallery start. Bark terpene odors and DBH were not correlated with beetle landing rates, with the exception of beta-phellandrene which accounted for a statistically significant 18% of the variation in landing rates. Beetles were unable to distinguish between hosts, dead hosts and nonhosts during landing. The elderberry pith bioassay indicated the presence of a gallery initiation stimulant in the bark.


Sign in / Sign up

Export Citation Format

Share Document