Comparing site quality indices and productivity in ponderosa pine stands of western Montana

1988 ◽  
Vol 18 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Scott D. McLeod ◽  
Steven W. Running

Four indices of site quality were compared with volume growth of pure, ideal ponderosa pine (Pinusponderosa Laws.) stands in western Montana. Indices based on quantifying the biophysical factors or physiological processes that control productivity (available water index and a relative index of seasonal photosynthesis from computer simulations) worked as well as those based on tree or stand measurements (site index and leaf area index). The following correlations of mean annual stem volume increment were found: with leaf area index, R2 = 0.93; with available water index, R2 = 0.95; with site index, R2 = 0.98; with gross photosynthesis R2 = 0.96. The available water and photosynthesis indices were also highly correlated to site index (R2 > 0.95). However, the tree-dependent site quality indices varied by stand density. Leaf area index and volume growth increased with stand density while site index decreased. Simulations indicated that depletion of soil water effectively halted transpiration and photosynthesis by midsummer and illustrated that even with adequate water, cold spring and fall temperatures ultimately defined the length of the growing season and hence site quality. We conclude that an ecosystem process model can provide an index to site quality independent of tree or stand measurements.

2007 ◽  
Vol 37 (2) ◽  
pp. 343-355 ◽  
Author(s):  
Nate G. McDowell ◽  
Henry D. Adams ◽  
John D. Bailey ◽  
Thomas E. Kolb

We examined the response of growth efficiency (GE), leaf area index (LAI), and resin flow (RF) to stand density manipulations in ponderosa pine ( Pinus ponderosa Dougl. ex Laws.) forests of northern Arizona, USA. The study used a 40 year stand density experiment including seven replicated basal area (BA) treatments ranging from 7 to 45 m2·ha–1. Results were extended to the larger region using published and unpublished datasets on ponderosa pine RF. GE was quantified using basal area increment (BAI), stemwood production (NPPs), or volume increment (VI) per leaf area (Al) or sapwood area (As). GE per Al was positively correlated with BA, regardless of numerator (BAI/Al, NPPs/Al, and VI/Al; r2 = 0.84, 0.95, and 0.96, respectively). GE per As exhibited variable responses to BA. Understory LAI increased with decreasing BA; however, total (understory plus overstory) LAI was not correlated with BA, GE, or RF. Opposite of the original research on this subject, resin flow was negatively related to GE per Al because Al/As ratios decline with increasing BA. BAI, and to a lesser degree BA, predicted RF better than growth efficiency, suggesting that the simplest measurement with the fewest assumptions (BAI) is also the best approach for predicting RF.


2010 ◽  
Vol 40 (4) ◽  
pp. 629-637 ◽  
Author(s):  
R. Justin DeRose ◽  
Robert S. Seymour

Leaf area index (LAI) strongly controls forest stand production. Silviculturists can easily manage this biologically important variable by quantifying its relationship to more directly manageable stand elements, such as density. Hypothesized patterns of LAI development over relative stand density (RD) in even-aged stands of balsam fir ( Abies balsamea (L.) Mill.) and red spruce ( Picea rubens Sarg.) were examined using 78 plots from the Cooperative Forestry Research Unit’s Commercial Thinning Research Network located in the Acadian forest zone in Maine. Nonlinear regression indicated that LAI was significantly related to RD, site quality, and stand top height. LAI increased nonlinearly with increasing RD holding stand top height constant. At a given RD, LAI peaked at approximately 13 m in stand top height. Site quality positively and linearly influenced LAI, but this was only apparent after crown closure, which in turn was influenced by initial stand density. Five-year trajectories of LAI–RD remeasurement data showed an increase in LAI and RD for all stands that varied by stand top height and site quality. Taken together, RD, stand top height, and site quality are strong predictors of LAI and can be used by silviculturists to manage for LAI.


2002 ◽  
Vol 78 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Victor J Lieffers ◽  
Bradley D Pinno ◽  
Kenneth J Stadt

This study examines light competition between aspen and spruce during the sequence of aspen development. Leaf area index and light transmission were measured or estimated for aspen stands from 2 to 125 years old. Light transmission was lowest at 15-25 years, and in some stands, transmission was less than 5% of above-canopy light. Hypothetical aspen stands with various stem configurations and heights were developed, and positions were identified that would meet or fail Alberta free-to-grow (FTG) standards. Light transmission was estimated at each position with the MIXLIGHT forest light simulator. Positions in canopy gaps or at the northern sides of canopy gaps had higher light. In general, however, there was little difference in available light between positions that met or failed FTG criteria. Stand density and size of aspen trees appears to be a better index to predict light transmission and spruce success in juvenile aspen stands than current FTG criteria. Key words: competition, free to grow, hardwood, spruce, light


1996 ◽  
Vol 21 (1) ◽  
pp. 241-241
Author(s):  
Gene Burris ◽  
Don Cook ◽  
B. R. Leonard ◽  
J. B. Graves ◽  
J. Pankey

Abstract The test was conducted at the Northeast Research Station in St. Joseph, LA. Plots were replicated 4 times in a RCB design and were four rows (40-inch spacing) X 65 ft. ‘Stoneville LA 887’ cotton seed was planted 2 and 3 May on a commerce silt soil which was fertilized sidedress with 90 lb N/acre. Cotton seed were planted with a John Deere model 7100 series planter which was equipped with 10 inch seed cones mounted to replace the seed hoppers. The seed rate was 4 seed/row ft. Granular in-furrow treatments were applied with 8 inch belt cone applicators mounted to replace the standard granular applicators. Control of thrips and aphids was evaluated on 5 randomly selected plants/plot. Evaluations were made on 18, 19, 24, 26, and 29 May and 8 Jun. Plant height counts were taken on 10 randomly selected plants/plot on 8 Jun. Stand density and leaf area was determined by counting the number of plants in a randomly selected meter on 29 May. Leaf area was recorded using a Li Cor leaf area machine. The data was recorded as cm2 and converted to a leaf area index (LAI). Major pests and/or secondary pest control was initiated in Jun and continued on an “as needed” basis through Aug.


1992 ◽  
Vol 18 (4) ◽  
pp. 275-282 ◽  
Author(s):  
Peng Gong ◽  
Ruiliang Pu ◽  
John R. Miller

1991 ◽  
Vol 21 (3) ◽  
pp. 300-305 ◽  
Author(s):  
N. J. Smith

Salal (Gaultheriashallon Pursh) leaf biomass, leaf area index, specific leaf area, and leaf morphology were examined in 13 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands from 37 destructively measured 1-m2 quadrats. In response to light and stand overstory density, salal shoots produced either mainly sun leaves or mainly shade leaves. Sun leaves were associated with sunflecks in open-grown or variably stocked stands. Shade leaves were associated with diffuse light under denser stands. Sun-leaf quadrats had mean specific leaf areas less than 90 cm2/g; shade-leaf quadrats had mean specific leaf areas greater than 90 cm2/g. Sun leaves were narrower, with average leaf widths less than 5 cm. Quadrat salal leaf biomass and leaf area index peaked at Curtis' metric relative density 5.9, which corresponded to an availability of 15% of global photosynthetically active radiation. Sun-leaf quadrats occurred below relative density 5; shade-leaf quadrats occurred above relative density 4. A mixture of sun- and shade-leaf quadrats occurred between about relative density 4 and 5, depending on the uniformity of stocking.


Author(s):  
H.-w. Zhang ◽  
H.-l. Chen

The vegetation coverage is one of the important factors that restrict the accuracy of remote sensing retrieval of soil moisture. In order to effectively improve the accuracy of the remote sensing retrieval of soil moisture and to reduce the impact of vegetation coverage variation on the retrieval accuracy, the Leaf Area Index (LAI) is introduced to the Normalized Difference Water Index (NDWI) to greatly improve the accuracy of the soil moisture retrieval. In its application on the regional drought monitoring, the paper uses the relative LAI from two places which locate in the north and south of Henan Province respectively (Xin Xiang and Zhu Ma Dian) as indicators. It uses the days after turned-green stage to conduct difference value correction on the Relative Leaf Area Index (RLAL) of the entire province, so as to acquire the distribution of RLAI of the province’s wheat producing area. After this, the local remote sensing NDWI will be Modified (MNDWI = NDWI ×RLAI ) to acquire the soil moisture distribution status of the entire province’s wheat producing area. The result shows that, the Modified Normalized Difference Water Index of LAI which based on the days after turned-green stage can improve the real time retrieval accuracy of soil moisture under different vegetation coverage.


1989 ◽  
Vol 19 (9) ◽  
pp. 1131-1136 ◽  
Author(s):  
William R. Bidlake ◽  
R. Alan Black

Total leaf-area index and the vertical distribution of leaf-area index were described for an unthinned stand (density 11 250 stems/ha) and a thinned stand (density 1660 stems/ha) of 30-year-old Larixoccidentalis Nutt. Two independent methods were used to estimate leaf-area index in each of the two stands. The first method is based on allometric relationships that are applied to stem measurements, and the second method is based on gap-fraction analysis of fisheye photographs. Leaf-area index estimates obtained by the two methods were not significantly different. The gap-fraction method provides a desirable alternative because much less fieldwork is required, however, use of this method is limited to canopies where the light-blocking elements are randomly displayed. Total leaf-area index values for the unthinned and thinned stands were 5.0 and 3.6, respectively. The vertical distribution of leaf-area index in the unthinned stand resembled a normal distribution. The vertical distribution of leaf-area index in the thinned stand would have resembled a normal distribution, except that thinning operations resulted in a truncated distribution of leaf-area index at the canopy base.


Sign in / Sign up

Export Citation Format

Share Document