stand density index
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Rumeng He ◽  
Xuhu Wang ◽  
Tao Liu ◽  
Lijun Guo ◽  
Baitian Wang ◽  
...  

Abstract With climate change, understanding tree responses to climate is important for predicting trees’ growth, and plant competition as a nonnegligible biotic factor plays a key role in such response. However, few studies have investigated how competition affects the response of Pinus tabulaeformis plantations to climate . In our study, we investigated nine 29-year-old P. tabulaeformis plantation plots (three density gradients). The dendroecological method was used to analyze the impact of competition on trees response to drought and interannual climate variation. Stand density index was used to indicate the intensity of competition. The results showed that competition modified the climate-growth relationship. Competition increased trees’ sensitivity to drought but the relationship between competition and sensitivity to drought was nonlinear. The competition effect slightly increased under intense competition conditions. Additionally, competition reduced trees’ sensitivity to interannual climate variation. After 1999, the effect of competition was obvious. The sensitivity of small-diameter trees, especially those in middle- and high-density stands, declined. Thus, in the future these trees presumably may exhibit a reduced sensitivity to interannual climate variation and a greater sensitivity to drought.


2021 ◽  
pp. 1-12
Author(s):  
Ryan R. Heiderman ◽  
Mark J. Kimsey

Maximum stand density index (SDIMAX) models were developed for important Pacific Northwest conifers of western Oregon and Washington, USA, based on site and species influences and interactions. Inventory and monitoring data from numerous federal, state, and private forest management groups were obtained throughout the region to ensure a wide coverage of site characteristics. These observations include information on tree size, number, and species composition. The effects and influence on the self-thinning frontier of plot-specific factors such as climate, topography, soils, and geology, as well as species composition, were evaluated based on geographic location using a multistep approach to analysis involving linear quantile mixed models, random forest, and stochastic frontier functions. The self-thinning slope of forest stands dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) was found to be –1.517 and that of stands dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.) was found to be –1.461, leading to regionwide modelled SDIMAX values at the 95th percentile of 1728 and 1952 trees per hectare, respectively. The regional model of site-specific SDIMAX will support forest managers in decision-making regarding density management and species selection to more efficiently utilize site resources toward healthy, productive forests.


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 349-360
Author(s):  
Stanislav Vacek ◽  
Rostislav Linda ◽  
Ivo Králíček ◽  
Karel Vančura ◽  
Anna Prokůpková ◽  
...  

The paper presents the results of a study on the impact of forest stand structure and development in 1998 to 2018 on the occurrence of dog’s tooth violets (Erythronium dens-canis L.) in the Medník National Nature Monument, Czech Republic. The research was carried out in mixed European hornbeam and sessile oak stands, herb-rich European beech stands and the Sázava-river Norway spruce ecotype stands. The site and stand characteristics of the following three forest stand types were compared: 1) oak-hornbeam forests, 2) herb-rich beech forests and 3) secondary spruce forests. The results showed that the ratio of sterile and fertile plants was 2.9 to 1. The occurrence of E. dens-canis was higher in older stands with differentiated structure. On the contrary, stands characterized by a higher number of trees and basal area negatively affected the population size of E. dens‑canis. Significantly, the density of E. dens-canis decreased with increasing stand density index (SDI) and increased with increasing diameter differentiation index in relation to tree neighbours (TM<sub>d</sub>). During the period of 20 years, the E. dens-canis population increased by 40.4% on permanent research plots, while the highest changes were observed on spruce plots (+92.1%) and the lowest increase was in oak-hornbeam forests (+18.0%). The highest numbers of E. dens-canis plants were found in herb-rich beech forests (1 774 plants·ha<sup>–1</sup>), lower numbers occurred in oak-hornbeam forests (784 plants·ha<sup>–1</sup>) and minimal in secondary spruce forests (51 plants·ha<sup>–1</sup>). <br /><br />


2020 ◽  
Vol 66 (6) ◽  
pp. 712-725
Author(s):  
Trevor D Walker ◽  
Bronson P Bullock ◽  
Benjamin C Smith ◽  
Steven E McKeand

Abstract Size-density trajectories and self-thinning boundary lines were modeled for two diverse provenances of Pinus taeda L. and five open-pollinated families within each provenance. The data used come from a single site with replicated 64-tree block plots measured through age 25 years. The effects of provenance and family were tested using linear and nonlinear mixed-effects self-thinning models. The drought-hardy Lost Pines of Texas provenance displayed a greater predicted carrying capacity (almost 200 more trees per hectare at reference diameter 25.4 cm) and had a more abrupt approach to the self-thinning line than the widely planted Atlantic Coastal Plain provenance. However, the growth rate of the Lost Pines of Texas provenance was considerably slower and stem form was unacceptable for timber production. Families from the Atlantic Coastal Plain differed in their maximum stand density index predictions (from 1,118 to 1,282 trees per hectare at the reference diameter), suggesting there is an opportunity for artificial selection to change maximum stand density index in this breeding population of loblolly pine. A novel method for predicting the self-thinning boundary line using random effects inherent to the experimental design is presented and recommended for repeated measures data. Experimental design considerations for evaluating genetic differences in self-thinning are discussed. Study Implications Genetic improvement of growth rate in forest trees has resulted in large gains in plantation productivity, but the effect on carrying capacity has not been addressed. This study indicated that artificial selection on tolerance to competition in the widely planted Atlantic Coastal Plain provenance of loblolly pine can potentially increase harvest yield without sacrificing growth rate. The drought-hardy Lost Pines of Texas provenance displayed greater carrying capacity but had poor stem form and slow growth. The Lost Pines provenance may be attractive for aboveground carbon sequestration, since it sustained substantially more biomass because of greater maximum stand density and denser wood.


Author(s):  
Micky Allen ◽  
Andreas Brunner ◽  
Clara Antón-Fernández ◽  
Rasmus Astrup

Abstract An understanding of the relationship between volume increment and stand density (basal area, stand density index, etc.) is of utmost importance for properly managing stand density to achieve specific management objectives. There are two main approaches to analyse growth–density relationships. The first relates volume increment to stand density through a basic relationship, which can vary with site productivity, age, and potentially incorporates treatment effects. The second is to relate the volume increment and density of thinned experimental plots relative to that of an unthinned experimental plot on the same site. Using a dataset of 229 thinned and unthinned experimental plots of Norway spruce, a growth model is developed describing the relationship between gross or net volume increment and basal area. The models indicate that gross volume increases with increasing basal area up to 50 m2 and thereafter becomes constant out to the maximum basal area. Alternatively, net volume increment was maximized at a basal area of 43 m2 and decreased with further increases in basal area. However, the models indicated a wide range where net volume increment was essentially constant, varying by less than 1 m3 ha−1 year−1. An analysis of different thinning scenarios indicated that the relative relationship between volume increment and stand density was dynamic and changed over the course of a rotation.


2020 ◽  
Vol 96 (01) ◽  
pp. 50-60
Author(s):  
Brandon H. Namm ◽  
John-Pascal Berrill

Tanoak (Notholithocarpus densiflorus) is the most common hardwood in northern California forests, yet its capacity for belowground carbon storage is unknown. To study relationships between coarse roots and tree and stand variables, we destructively sampled twelve tanoak root systems in Humboldt County, California. To estimate belowground biomass, we summed measured biomass of the root ball and a subsample of lateral roots along with predicted biomass of unmeasured coarse roots. Tree size was the best linear predictor of belowground biomass and carbon, indicating that a 25-cm diameter tanoak, for example, stored 70 kg of biomass and 34 kg of carbon in its root system. Stand density was also influential: a doubling of stand density index reduced belowground carbon by 22% for the average tanoak. The mean root-toshoot ratio of 0.35 varied between 0.11 and 0.65, with larger tanoak at high stand densities allocating proportionally less biomass belowground than small open-grown tanoak. The findings highlight the importance of accounting for stand density effects, otherwise belowground carbon will be under predicted in low-density stands managed for tree health, vigor, and resistance to drought and wildfire, or overestimated in forests managed at high densities for high carbon sequestration.


2019 ◽  
Vol 65 (6) ◽  
pp. 776-783 ◽  
Author(s):  
Xiongqing Zhang ◽  
Quang V Cao ◽  
Lele Lu ◽  
Hanchen Wang ◽  
Aiguo Duan ◽  
...  

Abstract Stand density index (SDI) has played an important role in controlling stand stocking and modeling stand development in forest stands. Reineke’s SDI (SDI_R) is based on a constant slope of –1.605 for the self-thinning line. For Chinese fir plantations, however, it has been reported that the self-thinning slope varied with site and climate, rendering SDI_R questionable. Remeasured data from 48 plots distributed in Fujian, Jiangxi, Guangxi, and Sichuan provinces were used to develop models for prediction of stand survival and basal area, with SDI_R incorporated as a predictor variable. Also included in the evaluation were growth models based on self-thinning slopes estimated from two groups of sites (SDI_S) or from climate variables (SDI_C). Results indicated that models with climate-sensitive SDI (SDI_C) performed best, followed by SDI_S and SDI_R. The control models without SDI received the worst overall rank. Inclusion of climate-sensitive SDI in growth and survival models can therefore facilitate modeling of the relation between stand density and growth/survival under future climate-change conditions.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 9 ◽  
Author(s):  
Gerónimo Quiñonez-Barraza ◽  
Hugo Ramírez-Maldonado

This study presents two stand-density indices (SDIs) based on exponential density decline as a function of quadratic mean diameter for all species combined in mixed-species forests with 22 species mix grouped in four species groups. The exponential-based density–diameter relationship, as well the density index corresponding to the slope or instantaneous mortality rate parameters, was compared with those based on power-law density–diameter relationship. A dataset of 202 fully stocked circular plots at maximum density was used for fitting the models, and a dataset of 122 circular plots was used for validation stand density index for all species combined of mixed-species stands. The dataset for validation was independent of dataset for model development. The first stand-density index showed a density management graphic (DMG) with a variable intercept and common instantaneous mortality rate, and the second index showed a DMG with common intercept and variable mortality rate. Additionally, the value of the initial density of the fitted line was more realistic than those generated by the potential model for all species combined. Moreover, the density management diagrams showed a curvilinear trend based on the maximum stand density index in graphical log–log scale. The DMGs could be interpreted as forest scenarios based on variable initial density and common management objectives or the same density and different management objectives for forest-rotation periods involving all species combined in mixed-species stands. The fitting of exponential and potential equations for species or species groups showed that the density–size relationships in mixed-species forests should be modeled for all species combined because the disaggregation of mixture species represented a weak tendency for each species or species group and the resultant fitted equations were unrealistic.


Sign in / Sign up

Export Citation Format

Share Document