Production and distribution of seed and pollen cones on Larixlaricina trees in young plantations

1991 ◽  
Vol 21 (4) ◽  
pp. 446-454 ◽  
Author(s):  
Kathleen J. Tosh ◽  
G. R. Powell

Numbers and distributions of seed and pollen cones were assessed on 90 Larixlaricina (Du Roi) K. Koch trees of 5, 6, and 7 years. Respectively, 27, 90, and 96% of the trees bore seed cones and 0, 62, and 96% bore pollen cones. Numbers of seed cones per tree averaged 9, 206, and 390 and of pollen cones, 0, 42, and 838. Ninety-nine, 88, and 30% of the seed cones were borne laterally on long shoots. At ages 6 and 7 years, 22 and 2% of the pollen cones were borne laterally. Seed cones occurred equally on side or lower surfaces of parent long shoots, but pollen cones were mainly on lower surfaces. Lateral cones were mainly borne proximally on the parent long shoots at first production; later, some were medial and a few were distal. Proportions of short shoots bearing seed cones increased acropetally. More short shoots bearing pollen cones were medial than proximal or distal. At age 6, proximal short shoots bearing pollen cones exceeded distal ones: the reverse occurred at age 7. Seed-cone and pollen-cone zones were not separate in the crowns, but within any shoot category, seed cones predominated on stronger shoots and pollen cones on weaker shoots.


1979 ◽  
Vol 57 (14) ◽  
pp. 1557-1572 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

The time and method of cone-bud differentiation and the phenology of cone-bud development were studied in 10- to 20-year-old trees growing outside their natural range and three 50-year-old trees growing within their natural range.Both pollen-cone and seed-cone buds of western larch (Larix occidentalis Nutt.) normally differentiated on short shoots that were at least 1 year old. Pollen-cone buds were commonly on proximal nonvigorous, often pendant vegetative long shoots in lower regions of the crown, whereas seed-cone buds were usually found on distal short shoots on vigorous but less pendant vegetative long shoots in upper regions of the crown.All potential cone buds were indistinguishable from potential vegetative short shoot buds during bud-scale initiation. In early June, when vegetative short shoots had begun to initiate leaves, cone-bud apices entered a period of differentiation during which time the mitotic frequency of the apices greatly increased followed by a marked increase in apical size. During differentiation, pollen-cone apices did not initiate any basal foliar organs and a short stalk resulted at the base of the cone, whereas seed-cone apices initiated a few basal foliar primordia before bract initiation began. Microsporophyll initiation began during the last half of June and initiation occurred rapidly until the end of July. Micros porangial development occurred from August to late October when fully developed pollen-cone buds became dormant. Pollen mother cells began meiosis before dormancy and overwintered at the diffuse stage. Bract initiation began about the end of June, was rapid until mid-August, then continued more slowly until seed-cone buds became dormant in late October. Ovuliferous scales were initiated acropetally from mid-August until dormancy. Cone-bud differentiation occurred at about the end of the period of vegetative lateral long shoot elongation at all locations.



1967 ◽  
Vol 45 (9) ◽  
pp. 1643-1651 ◽  
Author(s):  
J. Johanna Clausen ◽  
T. T. Kozlowski

Tamarack (Larix laricina (DuRoi) K. Koch) produces long shoots which bear two kinds of needles. Early needles are present in the bud and elongate rapidly after budbreak. Late needles, few of which are present in the bud, elongate later than early needles. Short shoots bear early needles only, and stem length seldom exceeds 1 mm. Seasonal changes in length and weight of needles and stems of both shoot types were measured. In long shoots, 75% of stem elongation, more than 70% of stem weight increment, and 65–70% of late needle elongation occurred after early needles were full-sized. Stem and late needle elongation ceased simultaneously, after which time needle weight decreased and stem weight increased. Early needles probably drew on food reserves while developing, and then themselves contributed to stem and late needle elongation. Final stem weight increase probably used photosynthate from both late and early needles of the current year.Shading of current and last year's needles showed that shoots in which photosynthesis was interrupted in this way produced shorter, lighter-weight stems than did control shoots.



2004 ◽  
Vol 24 (6) ◽  
pp. 631-637 ◽  
Author(s):  
Y. Miyazawa ◽  
K. Kikuzawa


Botany ◽  
2010 ◽  
Vol 88 (11) ◽  
pp. 995-1005 ◽  
Author(s):  
Kenichi Yoshimura

Rhododendron reticulatum D. Don ex G.Don is a common understory shrub in western Japan that exhibits highly plastic crown architecture and occurs in various light environments. I investigated how functional differentiation and spatial distribution of long and short shoots contribute to the plasticity of crown architecture of R. reticulatum. Crown form was derived from the crown depth/width ratio. Crown depth/width ratio was higher in sun-lit crowns. In crowns with higher depth/width ratio, long shoots were distributed in upper positions of the crown. Long shoots grew vertically and horizontally. In crowns with lower depth/width ratio, long shoots were arranged in the outer position of the crown and grew outward. Within neighboring shoots, long shoots had less mass than their paired short shoots. Results suggest that long shoots of R. reticulatum function to expand the crown and to reduce leaf overlap in multilayer crowns, which are found in high-light environments, while both long and short shoots function to minimize leaf overlap in monolayer crowns, which are found in shaded environments. Plasticity of crown architecture by altering shoot position and shoot morphology allows growth under various light environments in the forest understory.



1970 ◽  
Vol 48 (10) ◽  
pp. 1801-1804 ◽  
Author(s):  
D. F. W. Pollard

Different shoot types in aspen crowns carried leaves of different ages; leaders continued to produce leaves until early August and always carried some young leaves, whereas short shoots completed development by mid-June. Development of foliage on long shoots was intermediate between that on leaders and short shoots. Leaf area index of the 6-year-old stand reached a maximum of 2.4, of which 2.1 was contributed by short-shoot foliage. The rest was formed by leaders and long shoots. Young leaves on leaders and long shoots were not sufficient to influence total production in the stand appreciably, even though young aspen leaves may have high photosynthetic efficiencies. These young leaves could, however, influence height growth and lateral development of the canopy.



2001 ◽  
Vol 79 (11) ◽  
pp. 1270-1273 ◽  
Author(s):  
Pierre-Éric Lauri ◽  
Jean-Jacques Kelner

In a study of the apple (Malus ×domestica Borkh.) canopy structure, 5-year-old 'Fuji' and 'Braeburn' trees grafted on a low-vigour rootstock (M9) were compared at both fruiting branch and shoot levels. Percentages of short ([Formula: see text]5 cm) shoots and short shoot leaf area were significantly higher on 'Braeburn' than on 'Fuji', (76.8% vs. 72.6% and 46.9% vs. 42.9% for 'Braeburn' and 'Fuji', respectively). This high percentage of short shoots as compared with literature data was probably due to the training method, which reduced vigour. At shoot level, the ratio between dry masses of axis and leaf, called the axialization index, was determined to compare short and long shoots. Axialization values were higher for 'Braeburn' than for 'Fuji'. Although overall and individual leaf area was greater on long shoots, long shoot axialization (0.64 and 0.54 for 'Braeburn' and 'Fuji', respectively) was approximately twice that of short shoots (0.36 and 0.24, respectively). Therefore, for short shoots, the reduced carbon investment in supporting tissues may explain the significant role short shoots played in supporting early fruit development. For long shoots, the longer time required to reach the autotrophic and then exporting stage as well as the detrimental effect of early extension shoot development on fruit set might be explained by greater axialization.Key words: long shoot, short shoot, axialization index, apple, Malus ×domestica, biomass partitioning.



1991 ◽  
Vol 69 (6) ◽  
pp. 1179-1187 ◽  
Author(s):  
G. R. Powell ◽  
Kathleen J. Tosh

Pollen-cone and seed-cone development, from bud burst to maturity, was investigated on Larix laricina (Du Roi) K. Koch in three young plantations. The pollination mechanism was emphasized. Pollen cones grew rapidly to shed pollen, shrivelled, and remained on the trees for a year or more. Pollen was directed to the ovular regions by the bracts of the seed cones. Pollen adhered among papillae on the larger of two integument extensions. Degeneration of the centre of the papillate integument tip caused a collapse that drew pollen in as the papillate rim grew inward. This ingrowth was joined by that of the smaller integument extension, resulting in a sealed tubular structure that enclosed a dry micropylar canal. Pollen was held by the ingrown plug of degenerated tissue as the nucellus tip expanded into the base of the canal. As this occurred, the ovules, with or without pollination, grew to ultimate seed size, and the initially small ovuliferous scales overgrew the bracts. First bract, then ovuliferous-scale growth was associated with a double-sigmoid form of cone elongation. In mature cones the bracts decreased and the ovuliferous scales (except near the tip) increased in size acropetally. Key words: bract, integument, ovuliferous scale, pollen cone, seed cone, tamarack or eastern larch.



1989 ◽  
Vol 19 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
John N. Owens ◽  
Anna M. Colangeli

Cone buds were induced on container-grown and field-grown western hemlock (Tsugaheterophylla (Raf.) Sarg.) clones during a 3-year period to study the effects of time and duration of gibberellin A4/7 treatment on cone induction, sexuality of cones, and to relate these results to bud and shoot development. The most effective treatment times preceded anatomical differentiation. The most abundant pollen cones and seed cones were produced when trees were sprayed with gibberellin A4/7 before vegetative bud burst and early shoot elongation. Two to three weekly gibberellin A4/7 applications starting at preswollen and swollen-bud stages were adequate for pollen-cone production. Pollen-cone production decreased when the applications were started at vegetative bud burst or during early shoot elongation. A minimum of three weekly applications were required for seed-cone production, and applications were equally effective when started at preswollen, swollen, and vegetative bud burst stages. Seed-cone production decreased when three weekly applications were started during early shoot elongation; however, this was overcome by increasing the number of applications.



1984 ◽  
Vol 62 (3) ◽  
pp. 484-494 ◽  
Author(s):  
John N. Owens

Seed cones of Tsuga mertensiana (Bong) Carr. occur terminally on distal lateral branches and form from the differentiation of a terminal, previously vegetative apex, into a seed-cone apex. Pollen cones commonly occur on lateral branches and form from the differentiation of an undetermined axillary apex about 6 weeks after axillary bud initiation. Pollen cones also occasionally occur terminally. All cone buds began differentiation in late July after bud-scale initiation was complete and at about the end of lateral shoot elongation. Seed-cone buds initiated bracts and ovuliferous scales, but not ovules, before they became dormant at the end of October. Pollen-cone buds initiated all microsporophylls by early September. Microsporangia containing microspore mother cells differentiated before pollen-cone buds became dormant in mid-October. The time of cone-bud differentiation is related to vegetative bud and shoot development. The time and method of cone-bud differentiation is discussed in relation to T. heterophylla and other conifers having similar bud development.



1974 ◽  
Vol 52 (9) ◽  
pp. 2075-2084 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative shoots initiate leaves and lateral branches continuously from mid-April until the end of September. No buds with bud scales are formed and the vegetative apex is enclosed by leaf primordia at various stages of development. Pollen cones are initiated on proximal vegetative shoots during a 3-week period from mid-June to early in July. Transition to a pollen-cone apex is marked by an increase in mitotic activity in the apex and by the formation of a lateral branch in the axil of one of the last-formed leaf primordia, causing the apex to appear to branch dichotomously. The lateral branch remains at the base of the pollen cone and may resume growth the next year after the pollen cone is shed. Pollen-cone development continues until the end of September. Meiosis occurs during the last 2 weeks of August, and pollen develops during September. Seed cones are initiated on newly formed, distal axillary vegetative shoots during a 3-week period from late June to mid-July. Transition to a seed-cone apex is marked by an increase in mitotic activity followed by bract-scale initiation. Usually three ovules are initiated in the axil of each bract scale. Seed-cone development is complete by early September and the seed cones become dormant. The pattern of reproduction in yellow cedar is compared to other conifers and the possible relationships are discussed between time of cone initiation, sexuality of cones, and day length.



Sign in / Sign up

Export Citation Format

Share Document