The pollination mechanism and development after bud burst of cones of Larix laricina

1991 ◽  
Vol 69 (6) ◽  
pp. 1179-1187 ◽  
Author(s):  
G. R. Powell ◽  
Kathleen J. Tosh

Pollen-cone and seed-cone development, from bud burst to maturity, was investigated on Larix laricina (Du Roi) K. Koch in three young plantations. The pollination mechanism was emphasized. Pollen cones grew rapidly to shed pollen, shrivelled, and remained on the trees for a year or more. Pollen was directed to the ovular regions by the bracts of the seed cones. Pollen adhered among papillae on the larger of two integument extensions. Degeneration of the centre of the papillate integument tip caused a collapse that drew pollen in as the papillate rim grew inward. This ingrowth was joined by that of the smaller integument extension, resulting in a sealed tubular structure that enclosed a dry micropylar canal. Pollen was held by the ingrown plug of degenerated tissue as the nucellus tip expanded into the base of the canal. As this occurred, the ovules, with or without pollination, grew to ultimate seed size, and the initially small ovuliferous scales overgrew the bracts. First bract, then ovuliferous-scale growth was associated with a double-sigmoid form of cone elongation. In mature cones the bracts decreased and the ovuliferous scales (except near the tip) increased in size acropetally. Key words: bract, integument, ovuliferous scale, pollen cone, seed cone, tamarack or eastern larch.


1989 ◽  
Vol 19 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Anna M. Colangeli ◽  
John N. Owens

The development and function of the pollination mechanism is described for hemlock (Tsugaheterophylla (Raf.) Sarg.). Controlled pollinations at various stages following bud burst were used to define the period of maximum receptivity. Western hemlock has a pollination mechanism unlike that observed in other native conifers. The pollen grains were not taken into the micropyles; instead, the roughly sculptured pollen grains adhered to the long epicuticular wax covering the bracts. Seed cones became receptive to pollen soon after the bracts emerged from the bud scales and remained receptive until shortly before cone closure. Several days after the cones fully emerged beyond the bud scales, the ovuliferous scales elongated over the bracts, trapping the pollen between the bracts and scales. Several weeks after pollination, pollen germinated on the bracts and formed long pollen tubes which grew towards and into the micropyles.



1989 ◽  
Vol 19 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
John N. Owens ◽  
Anna M. Colangeli

Cone buds were induced on container-grown and field-grown western hemlock (Tsugaheterophylla (Raf.) Sarg.) clones during a 3-year period to study the effects of time and duration of gibberellin A4/7 treatment on cone induction, sexuality of cones, and to relate these results to bud and shoot development. The most effective treatment times preceded anatomical differentiation. The most abundant pollen cones and seed cones were produced when trees were sprayed with gibberellin A4/7 before vegetative bud burst and early shoot elongation. Two to three weekly gibberellin A4/7 applications starting at preswollen and swollen-bud stages were adequate for pollen-cone production. Pollen-cone production decreased when the applications were started at vegetative bud burst or during early shoot elongation. A minimum of three weekly applications were required for seed-cone production, and applications were equally effective when started at preswollen, swollen, and vegetative bud burst stages. Seed-cone production decreased when three weekly applications were started during early shoot elongation; however, this was overcome by increasing the number of applications.



1974 ◽  
Vol 52 (9) ◽  
pp. 2075-2084 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative shoots initiate leaves and lateral branches continuously from mid-April until the end of September. No buds with bud scales are formed and the vegetative apex is enclosed by leaf primordia at various stages of development. Pollen cones are initiated on proximal vegetative shoots during a 3-week period from mid-June to early in July. Transition to a pollen-cone apex is marked by an increase in mitotic activity in the apex and by the formation of a lateral branch in the axil of one of the last-formed leaf primordia, causing the apex to appear to branch dichotomously. The lateral branch remains at the base of the pollen cone and may resume growth the next year after the pollen cone is shed. Pollen-cone development continues until the end of September. Meiosis occurs during the last 2 weeks of August, and pollen develops during September. Seed cones are initiated on newly formed, distal axillary vegetative shoots during a 3-week period from late June to mid-July. Transition to a seed-cone apex is marked by an increase in mitotic activity followed by bract-scale initiation. Usually three ovules are initiated in the axil of each bract scale. Seed-cone development is complete by early September and the seed cones become dormant. The pattern of reproduction in yellow cedar is compared to other conifers and the possible relationships are discussed between time of cone initiation, sexuality of cones, and day length.



1981 ◽  
Vol 11 (1) ◽  
pp. 36-50 ◽  
Author(s):  
John N. Owens ◽  
Sheila J. Simpson ◽  
Marje Molder

The development of the pollination mechanism and the engulfment of pollen by the stigmatic tip is described for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) based on scanning electron microscopy. This information is used to determine and explain the optimal time of pollination and amount of pollen needed for maximum seed set. After dormancy the integument tip of the ovule developed into an unequally two-lobed stigmatic tip covered with long unicellular hairs. Most ovules had fully developed stigmatic tips when the seed cone emerged from the bud scales in early April. The conelets remained open and the stigmatic tip was most receptive for at least 4 days. Pollen freely sifted down between the bracts and ovuliferous scales and adhered to the stigmatic hairs. Six days after the conelets became receptive, stigmatic hairs around the micropyle began to collapse and were ungulfed with the entangled pollen into the micropyle. Also, ovuliferous scales began to thicken, restricting movement of pollen to the stigmatic tips. By 8–10 days after conelets became receptive, the stigmatic tips were completely engulfed, the ovuliferous scales had thickened enough to close the conelet, and the conelet had begun to bend down.Maximum seed set occurred when (1) cones were pollinated within 4 days after seed-cone buds had emerged half of the way out of their bud scales; (2) a minimum of 0.2 g of pollen was used per pollination bag; (3) a minimum of 11 pollen grains adhered to each stigmatic tip; and (4) at least 3 pollen grains were taken into each micropylar canal. The engulfing process occurred at the same rate and in the same manner regardless of whether living or heat-killed pollen was present or absent on the stigmatic surface. Poor seed set as it related to the pollination mechanism is discussed.



1988 ◽  
Vol 66 (5) ◽  
pp. 907-914 ◽  
Author(s):  
Anna M. Colangeli ◽  
John N. Owens

Pollen-cone development, which was divided into nine phenological stages, was compared with pollen cytology in eight field-grown western hemlock (Tsuga heterophylla (Raf.) Sarg.) clones in 1983 and three container-grown clones in 1984. Phenology proved to be an accurate indicator of cytology, independent of collection dates and rate of development. The breaking of dormancy, the resumption of development, and meiosis occurred during stage 1 (quiescent bud). During stage 2 (swollen pollen-cone bud) the tetrad of microspores separated. The exine wall was completely developed during stage 3 (bud burst). The one-celled microspores began to expand as a result of accumulation of reserves during stage 4, when the pollen cones were one-quarter to one-half emerged through the bud scales. The first cell division occurred during stage 5, when the cones were greater than half emerged. The second and third cell divisions occurred during stage 6, after the cones had completely emerged through the bud scales. The fourth and final cell division, resulting in mature five-celled pollen grains occurred during stage 7 (stalk elongation). Mature pollen consisted of two prothallial cells and a stalk, a body, and a tube cell. Pollen shed occurred at stage 8. The empty cones (stage 9) remained on the trees until the following winter. Some practical implications of relating pollen-cone phenology to cytology are discussed.



1988 ◽  
Vol 18 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Conor O'Reilly ◽  
John N. Owens

Reproductive growth and development were studied in 1983 in seven provenances of Pinuscontorta Dougl. ssp. latifolia Engelm. growing in a provenance trial near Prince George, B.C. Stages of pollen release and seed-cone receptivity were scored by indices of cone development. Pollen- and seed-cone numbers were estimated and the distribution of seed cones within the upper crown and on annual growth increments of fourth-whorl branches was assessed. Pollen-and seed-cone bud development was followed in sectioned long-shoot buds taken at 2- to 3-week intervals. The times of maximum seed-cone receptivity and pollen release differed slightly among provenances, indicating that there was a high chance of cross-pollination. Differences among provenances in pollen-cone numbers were large, but smaller differences in seed-cone numbers were noted. No mature pollen cones or developing pollen-cone buds were found in the Yukon provenance. Seed-cone production varied with whorl position and was influenced by polycyclic long-shoot development. Potential pollen-cone buds were initiated from May until late June. Pollen cones first differentiated in early to mid July in all provenances. Potential seed-cone apices were noted from mid-June to late July and differentiation occurred in mid-July to early August, depending on provenance. Seed-cone bud development began first in the northern provenances.



1980 ◽  
Vol 10 (4) ◽  
pp. 564-572 ◽  
Author(s):  
John N. Owens ◽  
Sheila J. Simpson ◽  
Marje Molder

Mature, dry, one-celled pollen was formed before pollen cones became dormant in the fall. Pollen averaged 27 μm in diameter, was irregular in shape, nonsaccate, and the surface was reticulate to tegillate-baculate and irregularly covered with orbicules. The pollen contained several large lipid droplets and no starch. No changes occurred in pollen during dormancy and pollen was shed at the one- or two-celled stage during the last half of March.All ovules were initiated and became flask shaped before seed-cone dormancy. No changes occurred in ovules during dormancy. Seed cones ended dormancy in early March, enlarged and opened, exposing the ovules. A pollination drop was produced by a breakdown of cells at the tip of the nucellus. A large pollination drop was exuded from each ovule in a cone but exudation did not occur at the same time in all ovules. Each ovule exuded and withdrew a pollination drop two to four times before the pollination drop was permanently withdrawn. Each ovule was receptive for a few days and each cone was receptive for about 1 week. The pollination drops were withdrawn in the presence or absence of pollen but were withdrawn more rapidly after pollen entered the pollination drop. The cuticular surface of the bract-scales prevented wetting of the surface and caused the beading of water droplets, which in turn could carry pollen to the micropyle. Pollen grains entering a pollination drop were withdrawn inside the drop into the micropyle. Cells lining the micropylar canal enlarged and sealed the canal while bract-scales enlarged and buried the ovules within the cone.



1982 ◽  
Vol 60 (11) ◽  
pp. 2249-2262 ◽  
Author(s):  
John N. Owens ◽  
Hardev Singh

Vegetative terminal and axillary bud development and the time and method of cone initiation and cone bud development are described for Abies lasiocarpa (Hook.) Nutt.Cell divisions began in vegetative buds early in April. A brief period of apical enlargement was followed by bud-scale initiation for 10 weeks. Buds were initiated in the axils of some leaf primordia about the time of vegetative bud burst, 1 month after vegetative bud dormancy ended. All buds completed bud-scale initiation by the end of June, which coincided with the end of the rapid phase of lateral shoot elongation. This was followed by a 2-week period of bud differentiation, during which time few primordia were initiated, apical size increased, and apical shape and zonation changed more in reproductive than in vegetative apices. Leaf and bract initiation began by mid-July and continued until mid-October, when vegetative and seed-cone buds became dormant. Microsporophyll initiation began earlier and was nearly completed by the end of July; pollen-cone buds became dormant in mid-September.The number of cone buds is determined by the proportion of axillary bud primordia that fully developed and the pathway along which they developed. Potential seed-cone buds may become latent but more commonly differentiate into vegetative buds of low vigor. Potential pollen-cone buds frequently become latent but have not been observed to differentiate into vegetative buds. The position of the axillary bud on the shoot and of the shoot in the tree strongly influences axillary bud development in Abies.



1990 ◽  
Vol 20 (9) ◽  
pp. 1432-1437 ◽  
Author(s):  
Anna M. Colangeli ◽  
John N. Owens

Seed and seed-cone development were observed in a wind-pollinated western hemlock (Tsugaheterophylla (Raf.) Sarg.) clone bank in 1983 and 1986. Seed efficiency, the number of filled seed per cone divided by the seed potential, averaged 64% for 58 wind-pollinated clones in 1983 and 20% for 38 clones in 1986. Based on anatomical observations and cone dissections, seed losses resulted from pre- and post-pollination ovule abortion, insufficient pollen, no fertilization, and embryo degeneration. Prepollination ovule abortion, identified by small, flat seed in mature cones, contributed to 11 and 14% reduction in filled-seed yield in 1983 and 1986, respectively. Full-sized but empty seed (lacking an embryo) accounted for 25 and 66% reduction in potential seed yield in the 2 years, respectively. In 1983, 98% of the clones bore a pollen-cone crop compared with 53% in 1986. Lack of fertilization resulting from a limited pollen supply was believed to be the main cause for the lower filled-seed yield in 1986. The effect of wind and controlled (cross-) pollination on filled-seed production was determined for 16 clones in 1983. Seed efficiency after wind and cross-pollination averaged 65 and 69%, respectively. Seed potential averaged 34 and 31 ovules per cone for the wind- and cross-pollinated cones, respectively. Prepollination ovule abortion averaged 12 and 14%, respectively. From anatomical observations, the full-sized but empty seed resulted from lack of fertilization and embryo degeneration. The different factors affecting final filled-seed yield are discussed in terms of their effect on seed production.



1977 ◽  
Vol 55 (8) ◽  
pp. 992-1008 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

In the trees studied, vegetative buds began development in early April, bud burst occurred in early June and shoot elongation was completed by late July. Vegetative buds initiated bud scales from mid-April until mid-July and then initiated leaf primordia until the vegetative buds became dormant in November. All axillary buds were initiated in mid-May and their bud scales were initiated until early July. During bud-scale initiation, distal vegetative lateral apices were more conical but had a mitotic frequency similar to other lateral apices. Near the end of bud-scale initiation, vegetative apices accumulated more phenolic and ergastic compounds in future pith cells than did potential seed-cone or pollen-cone apices. Bud differentiation occurred in mid-July at the end of lateral shoot elongation. During bud differentiation the mitotic frequency of pollen-cone and seed-cone apices increased much more than that of distal vegetative apices. This resulted in a marked increase in apical size and a change in apical shape and zonation that made reproductive apices easily distinguishable from vegetative apices. Bracts began to be initiated in mid-July, and ovuliferous scales, in mid-August. Both continued to be initiated until seed-cone buds became dormant in November. A single megaspore mother cell formed in each ovule before dormancy. Microsporophylls were initiated from mid-July until early September. Microsporangia began to differentiate in September and contained microspore mother cells when pollen cones became dormant in mid-October. Meiosis did not begin before dormancy. A few potential vegetative and many potential seed-cone and potential pollen-cone apices became latent during bud-scale initiation. Some potential seed-cone apices became vegetative buds. Consequently, the number of cone buds formed was determined primarily by the proportion of apices that developed fully and the pathway along which they developed.



Sign in / Sign up

Export Citation Format

Share Document