Spatial variation in tree regeneration in the forest-tundra ecotone, Rocky Mountain National Park, Colorado

1995 ◽  
Vol 25 (8) ◽  
pp. 1326-1339 ◽  
Author(s):  
Peter J. Weisberg ◽  
William L. Baker

Ecotone vegetation may be especially sensitive to climate change. In particular, the invasion of subalpine meadows by tree seedlings has been well documented. However, there has been no systematic analysis of tree regeneration across the environmental heterogeneity of the alpine forest–tundra ecotone (FTE). Also, the position of the FTE may be relictual from more favorable climates of the past and therefore unresponsive to changing climate. To assess the environmental controls on FTE tree regeneration, to determine whether the ecotone might be relictual, and to determine whether tree invasion of nonforested FTE areas is occurring, we measured tree regeneration in various environments within the FTE of Rocky Mountain National Park, Colorado. Generally, seedling establishment appears to be controlled by patterns of soil moisture. Little seedling establishment was observed in krummholz openings, except for high seedling densities in willow wetlands. Tree seedling invasion of tundra is rare. Therefore, the upper limits of the FTE in Rocky Mountain National Park may be relictual from more favorable climates of the past. Abundant seedling establishment in patch forest openings suggests that patch forest may be poised to change to closed forest.

2020 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Antonio-Juan Collados-Lara ◽  
Steven R. Fassnacht ◽  
Eulogio Pardo-Igúzquiza ◽  
David Pulido-Velazquez

There is necessity of considering air temperature to simulate the hydrology and management within water resources systems. In many cases, a big issue is considering the scarcity of data due to poor accessibility and limited funds. This paper proposes a methodology to obtain high resolution air temperature fields by combining scarce point measurements with elevation data and land surface temperature (LST) data from remote sensing. The available station data (SNOTEL stations) are sparse at Rocky Mountain National Park, necessitating the inclusion of correlated and well-sampled variables to assess the spatial variability of air temperature. Different geostatistical approaches and weighted solutions thereof were employed to obtain air temperature fields. These estimates were compared with two relatively direct solutions, the LST (MODIS) and a lapse rate-based interpolation technique. The methodology was evaluated using data from different seasons. The performance of the techniques was assessed through a cross validation experiment. In both cases, the weighted kriging with external drift solution (considering LST and elevation) showed the best results, with a mean squared error of 3.7 and 3.6 °C2 for the application and validation, respectively.


Sign in / Sign up

Export Citation Format

Share Document