scholarly journals Assessment of High Resolution Air Temperature Fields at Rocky Mountain National Park by Combining Scarce Point Measurements with Elevation and Remote Sensing Data

2020 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Antonio-Juan Collados-Lara ◽  
Steven R. Fassnacht ◽  
Eulogio Pardo-Igúzquiza ◽  
David Pulido-Velazquez

There is necessity of considering air temperature to simulate the hydrology and management within water resources systems. In many cases, a big issue is considering the scarcity of data due to poor accessibility and limited funds. This paper proposes a methodology to obtain high resolution air temperature fields by combining scarce point measurements with elevation data and land surface temperature (LST) data from remote sensing. The available station data (SNOTEL stations) are sparse at Rocky Mountain National Park, necessitating the inclusion of correlated and well-sampled variables to assess the spatial variability of air temperature. Different geostatistical approaches and weighted solutions thereof were employed to obtain air temperature fields. These estimates were compared with two relatively direct solutions, the LST (MODIS) and a lapse rate-based interpolation technique. The methodology was evaluated using data from different seasons. The performance of the techniques was assessed through a cross validation experiment. In both cases, the weighted kriging with external drift solution (considering LST and elevation) showed the best results, with a mean squared error of 3.7 and 3.6 °C2 for the application and validation, respectively.

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117893 ◽  
Author(s):  
Amanda M. West ◽  
Sunil Kumar ◽  
Tewodros Wakie ◽  
Cynthia S. Brown ◽  
Thomas J. Stohlgren ◽  
...  

2017 ◽  
Vol 18 (3) ◽  
pp. 573-589 ◽  
Author(s):  
Camille Garnaud ◽  
Stéphane Bélair ◽  
Marco L. Carrera ◽  
Heather McNairn ◽  
Anna Pacheco

Abstract Although soil moisture is an essential variable within the Earth system and has been extensively investigated, there is still a limited understanding of its spatiotemporal distribution and variability. Thus, the objective of this study is to attempt to reproduce the spatial variability of soil moisture and brightness temperature as measured by point-based and airborne remote sensing measurements. To do so, Environment and Climate Change Canada’s Surface Prediction System (SPS) is run at very high resolution (100 m) over a region of Manitoba (Canada) where an extensive soil moisture experiment took place in the summer of 2012 [SMAP Validation Experiment 2012 (SMAPVEX12)]. Results show that realistic finescale soil texture improves the quality of SPS outputs. Soil moisture spatial average evolution in time is well simulated by SPS. Simulated spatial variability is underestimated when compared to point-based measurements, although results are improved when examined domainwide versus comparisons using grid points corresponding to measurement sites. SPS brightness temperature fields compare well with remote sensing data in terms of spatial variability. It is shown that during drier periods, factors other than soil texture become important with respect to soil moisture spatial variability. However, during periods with plenty of precipitation, soil texture seems essential in improving simulated soil moisture spatial variability at high resolutions. These results support the conclusion that SPS could provide very high–resolution soil moisture products for research and operational purposes if high-resolution soil texture and vegetation products are made available on a larger scale.


Author(s):  
Anna S Boser ◽  
Daniel Sousa ◽  
Ashley E Larsen ◽  
Andrew MacDonald

Abstract Mosquito-borne diseases (MBD) threaten over 80% of the world’s population, and are increasing in intensity and shifting in geographical range with land use and climate change. Mitigation hinges on understanding disease-specific risk profiles, but current risk maps are severely limited in spatial resolution. One important determinant of MBD risk is temperature, and though the relationships between temperature and risk have been extensively studied, maps are often created using sparse data that fail to capture microclimatic conditions. Here, we leverage high resolution land surface temperature (LST) measurements, in conjunction with established relationships between air temperature and MBD risk factors like mosquito biting rate and transmission probability, to produce fine resolution (70 m) maps of MBD risk components. We focus our case study on West Nile virus (WNV) in the San Joaquin Valley of California, where temperatures vary widely across the day and the diverse agricultural/urban landscape. We first use field measurements to establish a relationship between LST and air temperature, and apply it to Ecosystem Spaceborne Thermal Radiometer Experiment (ECOSTRESS) data (2018-2020) in peak WNV transmission months (June-September). We then use the previously derived equations to estimate spatially explicit mosquito biting and WNV transmission rates. We use these maps to uncover significant differences in risk across land cover types, and identify the times of day which contribute to high risk for different land covers. Additionally, we evaluate the value of high resolution spatial and temporal data in avoiding biased risk estimates due to Jensen’s inequality, and find that using aggregate data leads to significant biases of up to 40.5% in the possible range of risk values. Through this analysis, we show that the synergy between novel remote sensing technology and fundamental principles of disease ecology can unlock new insights into the spatio-temporal dynamics of mosquito-borne diseases.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


Sign in / Sign up

Export Citation Format

Share Document