Dynamics of internalization and sequestration of guanylyl cyclase/atrial natriuretic peptide receptor-A

2001 ◽  
Vol 79 (8) ◽  
pp. 631-639 ◽  
Author(s):  
Kailash N Pandey

The guanylyl cyclase/natriuretic peptide receptor-A (NPRA), also referred to as GC-A, is a single polypeptide molecule. In its mature form, NPRA resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular cytoplasmic domain that contains a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic active site. The binding of atrial natriuretic peptide (ANP) to NPRA occurs at the plasma membrane; the receptor is synthesized on the polyribosomes of the endoplasmic reticulum, and is presumably degraded within the lysosomes. It is apparent that NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. This review describes the experiments addressing the interaction of ANP with the NPRA, the receptor-mediated internalization and stoichiometric distribution of ANP-NPRA complexes from cell surface to cell interior, and its release into culture media. It is hypothesized that after internalization, the ligand-receptor complexes dissociate inside the cell and a population of NPRA recycles back to plasma membrane. Subsequently, some of the dissociated ligand molecules escape the lysosomal degradative pathway and are released intact into culture media, which reenter the cell by retroendocytotic mechanisms. By utilizing the pharmacologic and physiologic perturbants, the emphasis has been placed on the cellular regulation and processing of ligand-receptor complexes in intact cells. I conclude the discussion by examining the data available on the utilization of deletion mutations of NPRA cDNA, which has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of NPRA.Key words: atrial natriuretic peptide receptor-A, guanylyl cyclase receptors, ANP-binding, internalization and recycling of receptor, lysosomal hydrolysis.


2011 ◽  
Vol 89 (8) ◽  
pp. 557-573 ◽  
Author(s):  
Kailash N. Pandey

Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.







Sign in / Sign up

Export Citation Format

Share Document