Effects of propafenone on sinus node function in the rabbit heart

1990 ◽  
Vol 68 (7) ◽  
pp. 851-855 ◽  
Author(s):  
Charles R. Kerr

Propafenone is a type 1C antiarrhythmic drug with efficacy for both ventricular and supraventricular arrhythmias. We investigated the effects of propafenone on properties of sinus node function in an in vitro preparation of rabbit sinus node and surrounding atrium. Spontaneous sinus cycle length (SCL), atriosinus conduction time (ASCT), and sinus node effective refractory period (SNERP) at multiple pacing cycle lengths were measured in the control state and during superfusion with propafenone (2.3 μM). SNERP prolonged from 175 ± 25 ms in the control state to 220 ± 45 ms (p < 0.001) with propafenone. ASCT also prolonged significantly (p < 0.01) from 50 ± 20 to 65 ± 20 ms whereas SCL did not change. In four experiments, multiple concentrations of propafenone were utilized and there appeared to be a dose-dependent prolongation of SNERP. Thus, propafenone has a significant effect on SNERP and ASCT in an isolated rabbit sinus node preparation.Key words: propafenone, sinus node, atrium.

1986 ◽  
Vol 251 (3) ◽  
pp. H631-H643 ◽  
Author(s):  
T. Mazgalev ◽  
L. S. Dreifus ◽  
E. L. Michelson ◽  
A. Pelleg

The effects of postganglionic vagal stimulation on atrioventricular nodal conduction were studied in 12 rabbit atrial-atrioventricular nodal preparations. Vagal stimulation was introduced in the sinus and atrioventricular nodes, separately or in combination, using single bursts of subthreshold stimuli. The sinus cycle length was scanned to identify the phasic effect of vagal stimulation. Action potentials from cells in the AN, N, and NH regions of the atrioventricular node were recorded by microelectrode techniques. Vagally induced hyperpolarization of cells in the atrioventricular node resulted in a phase-dependent prolongation of conduction time and reflected the level of residual hyperpolarization at the moment of arrival of the next atrial beat at the atrioventricular nodal input region. Vagally induced hyperpolarization was membrane potential dependent, although its overall time course was similar at different phases. Increased diastolic depolarization followed the maximal hyperpolarization. This "rebound" observed at certain phases was responsible for paradoxical shortening of the conduction time after vagal stimulation. The predominant effects of local vagal stimulation in the atrioventricular node were observed in cells in or near the N region. Slower rate of rise, shorter amplitude and duration, as well as step formations were among the changes in action potentials recorded from these cells. The effects of vagal stimulation were inhomogeneous between different regions of the atrioventricular node as well as within the N region, producing alternative pathways of conduction and the potential for reentry. The concomitant changes in sinus cycle length resulting from vagal stimulation in the sinus node region altered the phasic effects of vagal stimulation introduced in the atrioventricular node. This was related to a direct influence of the prolonged sinus cycle length on atrioventricular nodal refractoriness as well as an indirect effect on the degree of residual vagally induced hyperpolarization at the moment of arrival of the delayed atrial beat. These findings provide mechanistic explanations for the complex effects of vagal stimulation on atrioventricular nodal conduction.


1986 ◽  
Vol 251 (3) ◽  
pp. H619-H630
Author(s):  
T. Mazgalev ◽  
L. S. Dreifus ◽  
E. L. Michelson ◽  
A. Pelleg ◽  
R. Price

The effects of postganglionic vagal stimulation (PGVS) on atrioventricular nodal conduction were studied in 15 rabbit atrial-atrioventricular nodal preparations. PGVS was introduced, and sinus cycle length was scanned as independent bursts of subthreshold stimuli were produced in the sinus node and atrioventricular node (AVN). Changes in conduction of atrial impulses to the bundle of His were studied under the following experimental conditions: changes in sinus cycle length resulting from vagal influence on the sinus node, direct vagal stimulation exclusively to the AVN, and during both simultaneous or nonsimultaneous vagal stimulation to sinus node and AVN. The results of the present study showed that the direct effect of PGVS on AVN conduction time at a constant sinus cycle length is phase dependent with maximal prolongation achieved in the first or second beat after introduction of the burst. The interval between the onset of PGVS producing maximal prolongation of conduction time and the following atrial beat was designated the "optimal effective phase." It was shown that the optimal effective phase was a constant parameter for a given preparation and in the present experiments was 321 +/- 16 ms. However, when PGVS was introduced in combination to both nodes while scanning the cycle length, AVN conduction was variable, reflecting both the direct effects of PGVS on the AVN as well as the indirect effects resulting from changes in the sinus cycle length. Notably, it was found that simultaneous PGVS to both the sinus node and AVN usually diminished, whereas appropriate nonsimultaneous PGVS accentuated the typical phasic dependency of AVN conduction time. Additionally, vagally induced prolongation of the sinus cycle length was found to be accompanied by changes in the time of depolarization of the inputs to the AVN, thus influencing AVN conduction and facilitating reentry. These interactions between changes in the sinus cycle length and concomitant changes in the effectiveness of vagal influence on the AVN can be used to explain complexities of AVN conduction during increased vagal activity.


1995 ◽  
Vol 269 (4) ◽  
pp. H1258-H1267 ◽  
Author(s):  
J. Billette ◽  
J. Zhao ◽  
A. Shrier

The functional origin of atrioventricular nodal hysteresis was studied in isolated rabbit heart preparations. This hysteresis is characterized by asymmetric changes in nodal conduction time (NCT) occurring for symmetric changes in cycle length. The respective contribution of the nodal properties of recovery, facilitation, and fatigue to the beat-to-beat changes in NCT observed during paired symmetric ramps of decreasing and increasing cycle length was determined with specifically design stimulation protocols. Nodal hysteresis was found to be entirely accounted for by variations in the contribution of nodal recovery and fatigue properties observed at corresponding cycle lengths. The study establishes how this contribution varies on a beat-to-beat basis as a result of cycle length history. This holds true for the numerous changes in hysteresis observed in response to changes in the sequence and slope of the ramps. Facilitation clearly affected NCT during these responses but did not contribute to the hysteresis. Moreover, the study demonstrates that there is no inherent change in the characteristics of nodal function with the direction of the ramp that could account for the hysteresis. Thus nodal hysteresis arises from nodal functional properties of recovery and fatigue but does not constitute a distinct independent intrinsic property of the node.


1999 ◽  
Vol 90 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Michael D. Sharpe ◽  
Daniel J. Cuillerier ◽  
John K. Lee ◽  
Magdi Basta ◽  
Andrew D. Krahn ◽  
...  

Background The effects of sevoflurane on the electrophysiologic properties of the human heart are unknown. This study evaluated the effects of sevoflurane on the electrophysiologic properties of the normal atrioventricular conduction system, and on the accessory pathways in patients with Wolff-Parkinson-White syndrome, to determine its suitability as an anesthetic agent for patients undergoing ablative procedures. Methods Fifteen patients with Wolff-Parkinson-White syndrome undergoing elective radiofrequency catheter ablation were studied. Anesthesia was induced with alfentanil (20-50 microg/kg) and midazolam (0.15 mg/kg), and vecuronium (20 mg) and maintained with alfentanil (0.5 to 2 microg x kg(-1) x min(-1)) and midazolam (1 or 2 mg every 10-15 min, as required). An electrophysiologic study measured the effective refractory period of the right atrium, atrioventricular node, and accessory pathway; the shortest conducted cycle length of the atrioventricular node and accessory pathway during atrial pacing; the effective refractory period of the right ventricle and accessory pathway; and the shortest retrograde conducted cycle length of the accessory pathway during ventricular pacing. Parameters of sinoatrial node function included sinus node recovery time, corrected sinus node recovery time, and sinoatrial conduction time. Intraatrial conduction time and the atrial-His interval were also measured. Characteristics of induced reciprocating tachycardia, including cycle length, atrial-His, His-ventricular, and ventriculoatrial intervals, also were measured. Sevoflurane was administered to achieve an end-tidal concentration of 2% (1 minimum alveolar concentration), and the study measurements were repeated. Results Sevoflurane had no effect on the electrophysiologic parameters of conduction in the normal atrioventricular conduction system or accessory pathway, or during reciprocating tachycardia. However, sevoflurane caused a statistically significant reduction in the sinoatrial conduction time and atrial-His interval but these changes were not clinically important. All accessory pathways were successfully identified and ablated. Conclusions Sevoflurane had no effect on the electrophysiologic nature of the normal atrioventricular or accessory pathway and no clinically important effect on sinoatrial node activity. It is therefore a suitable anesthetic agent for patients undergoing ablative procedures.


1988 ◽  
Vol 255 (6) ◽  
pp. H1342-H1348
Author(s):  
C. Giorgi ◽  
M. Vermeulen ◽  
R. Cardinal ◽  
P. Savard ◽  
R. Nadeau ◽  
...  

The properties and determinants of hysteresis during ventricular effective refractory period (VERP) measurements by an extrastimulus technique were determined in 15 anesthetized open-chest dogs as well as in isolated ventricular muscle (n = 6). VERP was determined both by decreasing the S1-S2 interval and also by increasing S1S2. Hysteresis was then calculated by subtracting the VERP obtained with the decreasing S1S2 from the VERP obtained with the increasing S1S2. The effects of basic cycle length, pulse width, stimulation intensity, and the number of basic drives on VERP and hysteresis were evaluated. VERP was shorter for long pulse width, high stimulation intensities, and shorter basic cycle lengths. These modifications were not associated with significant changes of hysteresis. VERP was shorter during decreasing S1S2 than during increasing S1S2. Hysteresis was greater with 6 basic drive cycles than with 12 (P less than 0.001) in both in vivo and in vitro preparations. The data suggest that 1) hysteresis occurs during VERP measurements; 2) hysteresis is independent of stimulation modality; and 3) hysteresis decreases with the number of basic drive cycles.


2002 ◽  
Vol 92 (1) ◽  
pp. 225-229 ◽  
Author(s):  
L. Such ◽  
A. Rodriguez ◽  
A. Alberola ◽  
L. Lopez ◽  
R. Ruiz ◽  
...  

We have studied the intrinsic modifications on myocardial automatism, conduction, and refractoriness produced by chronic exercise. Experiments were performed on isolated rabbit hearts. Trained animals were submitted to exercise on a treadmill. The parameters investigated were 1) R-R interval, noncorrected and corrected sinus node recovery time (SNRT) as automatism index; 2) sinoatrial conduction time; 3) Wenckebach cycle length (WCL) and retrograde WCL, as atrioventricular (A-V) and ventriculoatrial conduction index; and 4) effective and functional refractory periods of left ventricle, A-V node, and ventriculoatrial retrograde conduction system. Measurements were also performed on coronary flow, weight of the hearts, and thiobarbituric acid reagent substances and glutathione in myocardium, quadriceps femoris muscle, liver, and kidney, to analyze whether these substances related to oxidative stress were modified by training. The following parameters were larger ( P < 0.05) in trained vs. untrained animals: R-R interval (365 ± 49 vs. 286 ± 60 ms), WCL (177 ± 20 vs. 146 ± 32 ms), and functional refractory period of the left ventricle (172 ± 27 vs. 141 ± 5 ms). Corrected SNRT was not different between groups despite the larger noncorrected SNRT obtained in trained animals. Thus training depresses sinus chronotropism, A-V nodal conduction, and increases ventricular refractoriness by intrinsic mechanisms, which do not involve changes in myocardial mass and/or coronary flow.


1990 ◽  
Vol 258 (1) ◽  
pp. H38-H44 ◽  
Author(s):  
A. S. Pickoff ◽  
A. Stolfi

The effects of tonic right and left vagal stimulation (RVS and LVS) on electrophysiological properties of the immature myocardium and specialized conduction system were evaluated in 11 neonatal canines pretreated with propranolol (1 mg/kg iv). Electrophysiological studies were performed by recording intracardiac electrograms from multiple endocardial catheters during programmed electrical stimulation. Assessments were made of sinus node function, intra-atrial, atrioventricular (AV) nodal and His-Purkinje conduction, and atrial and ventricular refractoriness in the control state and during RVS and LVS at 4–12 Hz. Vagal stimulation prolonged the sinus cycle length; RVS produced a 38% increase and LVS a 25% increase at 8 Hz (P less than 0.01). There were no changes in the intra-atrial or His-Purkinje conduction times. Comparable increases occurred during RVS and LVS in the paced cycle length resulting in AV nodal Wenckebach, the AV nodal conduction time at a paced cycle length of 340 ms, and the effective and functional refractory periods of the AV node, suggesting symmetrical influences of the right and left vagus on neonatal AV nodal function. Right atrial effective and functional refractory periods shortened significantly during vagal stimulation (ERP, 36% RVS and 23% LVS; FRP, 27% RVS and 15% LVS), and in 5 of 11 neonates, a sustained regular atrial tachyarrhythmia was induced during atrial extra-stimulation. Small yet significant increases were observed in the right ventricular ERP and FRP during vagal stimulation. This study provides information regarding the functional integrity of the parasympathetic nervous system and its potential role as a modulator of the electrophysiological properties of the newborn heart.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (4) ◽  
pp. H1195-H1202
Author(s):  
R. T. Whitney ◽  
G. J. Rozanski

A computer algorithm is described that used experimental data to model the arrhythmogenic interaction of phasic vagal stimuli and atrial ectopic pacemakers. The model consisted of a dominant sinus node and a single ectopic pacemaker center separated by conducting atrial tissue. Its primary operation was to predict the timing and incidence of atrial premature beats resulting from transient escape of ectopic automatic impulses when vagal-induced entrance block of the sinus impulse was simulated near the ectopic focus. These predictions were based on a series of experimentally derived phase-response and corrected recovery time curves, describing the modulation of ectopic pacemaker periodicity by vagal input and overdrive suppression, respectively. Depending on the combination of curves tested, the model predicted premature beats to develop only with critically timed vagal stimuli. The coupling intervals of vagal-induced premature beats were > 300 ms and varied as a function of vagal timing and sinus cycle length. The model suggests therefore that phasic vagal stimuli within the atrium may transiently protect ectopic pacemaker foci from conducted sinus impulses and mediate the genesis of atrial extrasystoles with long coupling intervals.


1987 ◽  
Vol 252 (1) ◽  
pp. H163-H177 ◽  
Author(s):  
J. Billette

To study the intranodal origin of the functional properties of the atrioventricular node, progressive changes in nodal cell activation time and cycle length occurring during complete sequences of periodic premature stimulation of the atrium were determined for 419 nodal cells recorded in 11 isolated rabbit heart preparations. The conduction time in proximal nodal cells including the N cells increased only at very short coupling intervals. Conduction time in the distal node (NH and H cells) first increased and then decreased with increasing prematurity. The major fraction of the basic and premature delays developed between N and NH cell activation, a period devoid of upstrokes. The effective and functional refractory periods were related to the minimum intervals between successive upstrokes at the node entrance and outlet, respectively. These results suggest that the cycle-length dependency of nodal conduction is the result of complex changes in propagation time occurring at three levels in the node, whereas the effective and functional refractory periods reflect reactivation limits of cells located at the node entrance and outlet, respectively.


Sign in / Sign up

Export Citation Format

Share Document