A technique for demonstrating the blood vascular system of squid

1971 ◽  
Vol 49 (4) ◽  
pp. 505-506 ◽  
Author(s):  
Helen E. Bradbury

The arterial and venous components of the blood vascular system of the coleoid cephalopod Illex illecebrosus were infiltrated with a vinyl plastic resin solution. This method of preparation of the vascular system provided permanent casts of its various regions. Such models greatly facilitate comparative studies of vascular architecture.

2019 ◽  
Vol 46 (11) ◽  
pp. 1023 ◽  
Author(s):  
Gizaw M. Wolde ◽  
Thorsten Schnurbusch

Substantial genetic and physiological efforts were made to understand the causal factors of floral abortion and grain filling problem in wheat. However, the vascular architecture during wheat spikelet development is surprisingly under-researched. We used the branched headt near-isogenic lines, FL-bht-A1-NILs, to visualise the dynamics of spikelet fertility and dry matter accumulation in spikelets sharing the same rachis node (henceforth Primary Spikelet, PSt, and Secondary Spikelet, SSt). The experiment was conducted after grouping FL-bht-A1-NILs into two groups, where tillers were consistently removed from one group. Our results show differential spikelet fertility and dry matter accumulation between the PSt and SSt, but also showed a concomitant improvement after de-tillering. This suggests a tight regulation of assimilate supply and dry matter accumulation in wheat spikelets. Since PSt and SSt share the same rachis node, the main vascular bundle in the rachis/rachilla is expected to bifurcate to connect each spikelet/floret to the vascular system. We postulate that the vascular structure in the wheat spikelet might even follow Murray’s law, where the wide conduits assigned at the base of the spikelet feed the narrower conduits of the distal florets. We discuss our results based on the two modalities of the vascular network systems in plants.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


1950 ◽  
Vol 16 (1) ◽  
pp. 91-103 ◽  
Author(s):  
John A. Layne ◽  
F.R. Schemm ◽  
W.W. Hurst

1972 ◽  
Vol 5 (1) ◽  
pp. 306-309
Author(s):  
Arthur J. O'Shea ◽  
Mervin D. Lynch ◽  
Thomas F. Harrington
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document