Escape behaviour of the pea aphid Acyrthosiphon pisum (Harris) in response to alarm pheromone and vibration

1982 ◽  
Vol 60 (10) ◽  
pp. 2245-2252 ◽  
Author(s):  
J. M. Clegg ◽  
C. A. Barlow

Pea aphids respond most effectively to the threat of a predator by walking away or dropping from their host plant. Simulating threat by using vibration and alarm pheromone, both separately and together, we found no evidence that escape responses are heritable, nor that individual aphids have characteristic escape behaviours. On the contrary, the amount of alarm pheromone influenced responses: the more pheromone, the more likely an immediate and effective escape. Vibration preceding alarm pheromone greatly increased responsiveness to pheromone, and aphids were more responsive to pheromone after vibration when feeding on stems than when feeding on the undersides of leaves.

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Cesar Auguste Badji ◽  
Zoé Sol-Mochkovitch ◽  
Charlotte Fallais ◽  
Corentin Sochard ◽  
Jean-Christophe Simon ◽  
...  

Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.


1978 ◽  
Vol 56 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Bernard D. Roitberg ◽  
Judith H. Myers

Adult and fourth-instar pea aphids from Vancouver, B.C., responded to alarm pheromone by either dropping, running, or backing up. Younger instars showed almost no response to pheromone but all instars responded to a pheromone–vibratory stimulus, usually by dropping. We suggest that younger instars respond conservatively to alarm pheromone because they are less agile on the ground and are more likely to die there before finding a suitable food plant. Adult and fourth-instar aphids from the hot, dry region of British Columbia do not respond to alarm pheromone by dropping. This is due to the high risk associated with any instar leaving the host plant where ground temperatures and evaporation rates are high.Clones of aphids contained both individuals which do and do not drop in response to pheromone stimulus. This mixture of behaviour types allows part of the group to exploit new resources while others remain on a known resource.


1986 ◽  
Vol 64 (4) ◽  
pp. 937-939 ◽  
Author(s):  
Lynn M. Brodsky ◽  
C. A. Barlow

The escape responses exhibited by pea aphids were examined at three different temperatures, 15, 20, and 25 °C, using two different predators: syrphid larvae and coccinellid beetles. Coccinellid beetles foraged more vigorously at higher temperatures resulting in greater vibrations on the host plant as they searched for aphids. Foraging rates for syrphids were slower by comparison and did not vary with temperature. We found that most aphids dropped off the host plant when confronted by coccinellid beetles, especially at higher temperatures, and backed up when confronted by syrphid larvae regardless of temperature. We conclude that individual aphids do not have characteristic escape responses, but rather the response adopted depends in part on the foraging rate and species of predator.


2002 ◽  
Vol 80 (12) ◽  
pp. 2131-2136 ◽  
Author(s):  
Edward B Mondor ◽  
Bernard D Roitberg

Aphids possess unique anatomical structures called cornicles through which a defensive secretion containing alarm pheromone is often emitted when a predator attacks an aphid. The levels of alarm pheromone in cornicle droplets from the pea aphid, Acyrthosiphon pisum (Harris), vary considerably during development; however, it is not clear how the length of the cornicle changes during ontogeny. The length of the cornicle relative to the lengths of other body structures may have profound effects on aphid defense and alarm signal diffusion. Using previously published morphological measurements of pea aphids and observing interactions between pea aphids and multicolored Asian ladybird beetles, Harmonia axyridis Pallas, it was observed that pea aphid cornicles elongate proportionally more than other body parts during the first four instars, when alarm-pheromone levels have peaked, than during the fifth (adult) instar, when pheromone levels decline. Pea aphids also are more likely to emit cornicle droplets and daub them onto a predator when the cornicles are undergoing such rapid growth. We suggest that because of a high risk of predation, rapid cornicle growth in juveniles has evolved both for individual defense and for the inclusive fitness benefits of alarm signaling.


2013 ◽  
Vol 103 (5) ◽  
pp. 578-583 ◽  
Author(s):  
Adalbert Balog

AbstractThe interplay between the host plant of an insect herbivore and an insect predator (here two-spot ladybird beetles; Adalia bipunctata (L).; Coleoptera: Coccinellidae), feeding upon such a herbivore was examined in the laboratory as factors possibly determining the differential abundance and success of green and red host races of pea aphid, Acyrthosiphon pisum Harris. The experiment comprised three treatments: two host plants (bean and clover), two treatment levels (control and predation) and three colour morph levels (green alone, red alone and green and red in mixture). Green morphs had higher fitness on the general host plant, bean Vicia faba, than on the derived host, clover (Trifolium pratense), in the absence of predation. Although green morph fitness was reduced by predation when infesting bean together with reds, there was no observable net fitness loss due to predation on clover in mixed colonies with red morphs. Red morphs exhibited fitness loss alone on both bean and clover, while clover plants seemingly prevented fitness loss in the presence of predation when red morphs were mixed with green ones. According to this scenario, when colour morphs existed as a mixed colony, the net fitness of either pea aphid morph was not influenced by predation on clover. Predators had significant effects only on red morphs on broad bean either when alone or were mixed together with green morphs. Thus, only red morphs experienced the benefits of switching from the general to the derived host red clover in the presence of predation. For green morphs, there was no apparent cost of switching host plants when they faced predation. Hence, the co-existence of green-red colour polymorphism of pea aphids on single host plants appears to be maintained by the morph gaining fitness on the derived host due to a host plant– and predation–reduction effect. These findings have important implications for understanding the ecology and evolution of host switching by different colour-plant host adapted races of pea aphids.


Behaviour ◽  
2021 ◽  
pp. 1-21
Author(s):  
Rosalind K. Humphreys ◽  
Graeme D. Ruxton ◽  
Alison J. Karley

Abstract For herbivorous insects, dropping from the host plant is a commonly-observed antipredator defence. The use of dropping compared to other behaviours and its timing in relation to contact with a predator was explored in both pea aphids (Acyrthosiphon pisum) and potato aphids (Macrosiphum euphorbiae). Pea aphids dropped more frequently in response to ladybird adults (Adalia bipunctata) than lacewing larvae (Chrysoperla carnea). Potato aphids mainly walked away or backed-up in response to both predator types; but they dropped more frequently relative to other non-walking defences when faced with ladybird adults. Contact with a predator was an important influencer of dropping for both species, and most drops occurred from adjacent to the predator. Dropping appears to be a defence adaptively deployed only when the risk of imminent predation is high; factors that increase dropping likelihood include presence of faster-foraging predators such as adult ladybirds, predator proximity, and contact between aphid and predator.


1986 ◽  
Vol 118 (6) ◽  
pp. 601-607 ◽  
Author(s):  
G.A. Maiteki ◽  
R.J. Lamb ◽  
S.T. Ali-Khan

AbstractPea aphids, Acyrthosiphon pisum (Harris), were sampled from 1980 to 1983 in field peas, Pisum sativum (L.), in Manitoba. Sweep and foliage samples were taken in commercial fields and plots. Aphids were found in late May or early June soon after the crop emerged, but populations were low throughout June. Populations increased in July, when the crop was flowering and producing pods, and peaked in the latter half of July or early August in 3 of the 4 years, when pods were maturing. Populations decreased rapidly after the peak, as the plants senesced. In 1980, a drought year, aphid densities were low and the populations peaked in the middle of August. From 1981 to 1983, densities exceeded the economic threshold in all commercial fields and all but one of the plots that were sampled.


1992 ◽  
Vol 124 (1) ◽  
pp. 87-95 ◽  
Author(s):  
K.L. Kouamé ◽  
M. Mackauer

AbstractThe influence of nutrient stress on growth, development, and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris), was investigated in the laboratory. We tested the hypothesis that species with a high reproductive investment have low resistance to starvation. Aphids in two groups were starved daily from birth for 4 h and 6 h, respectively, and compared with feeding counterparts reared on leaves of broad beans, Vicia faba L. Aphid wet weight increased as an exponential function of age in all groups. Starved aphids had lower adult weight and required longer from birth to parturition than feeding aphids. These effects increased with the length of daily starvation. The number of offspring produced was correlated with adult dry weight. Aphids were unable to compensate, or to compensate completely, for water and nutrient loss resulting from starvation. It is suggested that pea aphids allocate resources first to maintenance and then to reproduction when deprived of food.


1989 ◽  
Vol 24 (3) ◽  
pp. 344-347
Author(s):  
G. David Buntin ◽  
David J. Isenhour

The accuracy, precision and efficiency of stem-count and sweep-net techniques were compared for sampling the pea aphid, Acyrthosiphon pisum (Harris), in alfalfa. Density estimates by both techniques were highly correlated (r = 0.87). Both techniques were similar in sample precision and efficiency, but stem counts provided more accurate density estimates than the sweep net technique. The stem count technique is an accurate and efficient alternative to the sweep net for sampling pea aphids in alfalfa.


Sign in / Sign up

Export Citation Format

Share Document