Ross' Goose and Lesser Snow Goose colonies in the central Canadian Arctic

1983 ◽  
Vol 61 (1) ◽  
pp. 168-173 ◽  
Author(s):  
R. H. Kerbes ◽  
M. R. McLandress ◽  
G. E. J. Smith ◽  
G. W. Beyersbergen ◽  
B. Godwin

A total of 133 700 nesting Ross' Geese and Lesser Snow Geese (Anser rossii and Anser c. caerulescens), in 30 colonies, were photographed in the central Canadian Arctic, Queen Maud Gulf, N.W.T., in June 1976. Estimated species totals were 77 300 Ross' Geese and 56 400 Lesser Snow Geese (of which 15% were blue phase). Species totals were calculated from a photographic census of all Ross' Geese and white phase Snow Geese combined with assumptions based on the estimated proportion of blue phase Snow Geese in each of the 10 largest colonies and the estimated proportion of Ross' Geese in the largest colony. Comparison with a previous visual nesting inventory suggested that from 1967 to 1976 Ross' Geese doubled in number while Lesser Snow Geese increased fivefold. Nesting resources do not appear to be limited.

The Condor ◽  
2002 ◽  
Vol 104 (2) ◽  
pp. 432-436 ◽  
Author(s):  
Jason D. Weckstein ◽  
Alan D. Afton ◽  
Robert M. Zink ◽  
Ray T. Alisauskas

AbstractWe reanalyzed Quinn's (1992) mtDNA control region data set including new sequences from nine Lesser Snow Geese (Chen caerulescens caerulescens) and 10 Ross's Geese (Chen rossi) and found the same divergent lineages that Quinn (1992) attributed to vicariant separation of Lesser Snow Goose populations during the Pleistocene. However, peculiar patterns of mtDNA control region sequence variation, including a multimodal mismatch distribution of mtDNA sequences with two levels of population structuring and the sharing of two divergent haplotype lineages, are consistent with two hybridization episodes in Chen geese. Comparisons of mtDNA variation with historical and allozyme data sets compiled by Cooke et al. (1988) are consistent with the hypothesis that sharing of two mtDNA haplotype lineages between Ross's Goose and Lesser Snow Goose resulted from hybridization (Avise et al. 1992). Furthermore, population structure found within one haplotype cluster is consistent with Cooke et al.‘s (1988) hypothesis of past allopatry between blue and white Lesser Snow Geese.Hibridización y Subdivisión dentro y entre Poblaciones de Chen rossi y Chen caerulescens caerulescens: Una Perspectiva MolecularResumen. Reanalizamos los datos de la región de control del ADN mitocondrial (ADNmt) de Quinn (1992), junto con nuevas secuencias de nueve individuos de la especie Chen caerulescens caerulescens y 10 de Chen rossi. Encontramos los mismos linajes divergentes que Quinn (1992) atribuyó a la separación vicariante de las poblaciones de C. c. caerulescens durante el Pleistoceno. Sin embargo, encontramos que las dos especies comparten dos linajes de haplotipos divergentes, y la distribución de “mismatch” en secuencias del ADNmt mostró multimodalidad con dos niveles de estructuración de la población. Estos patrones peculiares están de acuerdo con la hipótesis de que hubo dos episodios de hibridización en gansos del género Chen. Los datos históricos y de aloenzimas compilados por Cooke et al. (1988) también apoyan esta hipótesis (Avise et al. 1992). Además, la estructura de la población dentro de un grupo de haplotipos es consistente con la hipótesis de Cooke et al. (1988) acerca de la pasada alopatría entre los morfos azul y blanco de C. c. caerulescens.


The Auk ◽  
2001 ◽  
Vol 118 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Shannon S. Badzinski ◽  
C. Davison Ankney ◽  
James O. Leafloor ◽  
Kenneth F. Abraham

AbstractWe collected eggs, neonates, and adults of Canada Geese (Branta canadensis interior) and Lesser Snow Geese (Chen caerulescens caerulescens) from Akimiski Island, Nunavut, during the 1996 breeding season. This was done to assess interspecific differences in egg composition, egg-nutrient catabolism, developmental maturity, tissue maturity, and body reserves, and to relate observed differences in those variables to ecological conditions historically experienced by Canada Geese and Lesser Snow Geese. Eggs of both species had identical proportional compositions, but Canada Goose embryos catabolized 13% more of their egg protein, whereas Lesser Snow Goose embryos catabolized 9% more of their egg lipid. Neonate Canada Geese and Lesser Snow Geese had similar protein reserves, relative to body size, but Lesser Snow Geese had relatively smaller lipid reserves than did Canada Geese. Relative to conspecific adults, Lesser Snow Goose goslings generally were structurally larger at hatch than were Canada Goose goslings. Neonate Lesser Snow Geese had more developmentally mature keels, wings, and breast muscles, and larger gizzards and caeca for their body size, than did neonate Canada Geese. Despite hatching from smaller eggs and having a shorter period of embryonic growth, skeletal muscles and gizzard tissues of Lesser Snow Geese were more functionally mature than those of Canada Geese. Increased lipid use during embryonic development could account for how Lesser Snow Geese hatched in a more developmentally and functionally mature state. In turn, differences in developmental and functional maturity of Lesser Snow Geese, as compared to Canada Geese, likely are adaptations that offset metabolic costs associated with their small body size, or to selection pressures associated with high arctic environmental conditions and colonial nesting and brood rearing.


1972 ◽  
Vol 50 (5) ◽  
pp. 529-536 ◽  
Author(s):  
F. Cooke ◽  
P. J. Mirsky ◽  
M. B. Seiger

Assortative mating in the dimorphic lesser snow goose could be explained if birds choose mates according to the color of their parents. Young birds were tested to determine if they would show color preferences at an early age. Blue and white phase lesser snow geese, as well as white phase geese dyed pink, were reared in families with either a blue, white, or pink foster parent. All birds were then combined in a large flock in an attempt to simulate natural conditions as closely as possible. Birds tested in a choice situation were found to show a significant preference for birds of the same color as their foster parents. The fact that the young were raised in families and later in a flock suggested that color preferences were a natural and not a laboratory phenomenon.Two lines of evidence suggest that where the color of the foster parent is altered, the preference for the color of the original foster parent is lost. This suggests that prolonged association of gosling and parent is important if parental color is to have an influence on mate selection.


The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
David N Koons ◽  
Lise M Aubry ◽  
Robert F Rockwell

Abstract Large amounts of money are spent each year to control overabundant species that imperil biodiversity and ecosystem functioning across the globe. Lesser Snow Geese (Anser caerulescens caerulescens) are emblematic of this issue, as their overabundance has affected a whole suite of plant, insect, and bird communities via a trophic cascade that managers have attempted to stop before it spreads further across the North American (sub)Arctic. To achieve this goal, liberalized harvest measures designed to decrease Lesser Snow Goose survival and abundance were implemented almost 2 decades ago. Our previous quantitative assessment of management effectiveness indicated that the growing Lesser Snow Goose population quickly overwhelmed a satiated hunter population despite liberalized harvest regulations, eventually reducing the fraction of Lesser Snow Geese being harvested each year. Consistent with the philosophy of adaptive resource management, we apply improved methods to additional years of monitoring data to evaluate the ongoing impact of harvest conservation efforts on Lesser Snow Goose harvest rates. Our previous results suggested little effect of liberalized harvest regulations on harvest rates, but our new findings suggest even less of an impact. Harvest rates have recently stabilized at ~3%, the lowest levels observed over the last 48 yr of our study. Barring adverse effects of environmental change on natural mortality or reproductive success, additional measures will need to be taken to reduce Lesser Snow Goose overabundance and their ecosystem damage.


1981 ◽  
Vol 59 (8) ◽  
pp. 1621-1624 ◽  
Author(s):  
G. Wobeser ◽  
F. A. Leighton ◽  
R. J. Cawthorn

Skeletal and cardiac muscle from wild geese dead of avian cholera was examined for Sarcocystis sp. infection. Microscopic cysts of Sarcocystis sp. were found in skeletal muscle of 42 of 88 Lesser Snow Geese, Anser caerulescens caerulescens, 1 of 7 Ross Geese, Anser rossi, and 1 of 3 Canada Geese, Branta canadensis, collected during April and May in central Saskatchewan. Two types of microcysts were present in skeletal muscle; one type had finger-like protrusions on the primary cyst wall; the other had a relatively smooth primary cyst wall. Both types were found in one Lesser Snow Goose. Microscopic cysts were found in the heart of 8 of 150 Lesser Snow Geese and 3 of 35 Ross Geese. All cysts in the myocardium had a smooth primary cyst wall.


1984 ◽  
Vol 62 (9) ◽  
pp. 1849-1852 ◽  
Author(s):  
Benjamin N. Tuggle ◽  
John L. Crites

Three species of trichostrongylid nematodes were removed from the gizzards of 25 lesser snow geese, Chen caerulescens caerulescens, collected at Winisk, Ont. A 100% prevalence of infection was noted in the sampled population with each bird harboring two or more of the following species: Epomidiostomum crami (prevalence, 92%; mean intensity, 18.7 ± 13.3), Amidostomum anseris (prevalence, 84%; mean intensity, 9.6 ± 9.8), and Amidostomum spatulatum (prevalence, 84%; mean intensity, 11.2 ± 9.8). When large burdens (>30) of both A. anseris and A. spatulatum were present in the mucosal lining of the gizzard, progressive degeneration of the epithilium and koilin linings was noted in 16% of the geese examined. Severe necrotic granulomata observed in the gizzard muscle of 36% of the geese were associated with sizable burdens (>25) of E. crami which were found burrowed in the gizzard muscle.


The Auk ◽  
1983 ◽  
Vol 100 (2) ◽  
pp. 335-343 ◽  
Author(s):  
M. Robert McLandress

Abstract I studied the nesting colony of Ross' Geese (Chen rossii) and Lesser Snow Geese (C. caerulescens caerulescens) at Karrak Lake in the central Arctic of Canada in the summer of 1976. Related studies indicated that this colony had grown from 18,000 birds in 1966-1968 to 54,500 birds in 1976. In 1976, geese nested on islands that were used in the late 1960's and on an island and mainland sites that were previously unoccupied. Average nest density in 1976 was three-fold greater than in the late 1960's. Consequently, the average distance to nearest neighbors of Ross' Geese in 1976 was half the average distance determined 10 yr earlier. The mean clutch size of Ross' Geese was greater in island habitats where nest densities were high than in less populated island or mainland habitats. The average size of Snow Goose clutches did not differ significantly among island habitats but was larger at island than at mainland sites. Large clutches were most likely attributable to older and/or earlier nesting females. Habitat preferences apparently differed between species. Small clutches presumably indicated that young geese nested in areas where nest densities were low. The establishment of mainland nesting at Karrak Lake probably began with young Snow Geese using peripheral areas of the colony. Young Ross' Geese nested in sparsely populated habitats on islands to a greater extent than did Snow Geese. Ross' Geese also nested on the mainland but in lower densities than Ross' Geese nesting in similar island habitats. Successful nests with the larger clutches had closer conspecific neighbors than did successful nests with smaller clutches. The species composition of nearest neighbors changed significantly with distance from Snow Goose nests but not Ross' Goose nests. Nesting success was not affected by the species of nearest neighbor, however. Because they have complementary antipredator adaptations, Ross' and Snow geese may benefit by nesting together.


2008 ◽  
Vol 122 (1) ◽  
pp. 34
Author(s):  
Richard H. Kerbes ◽  
Katherine M. Meeres ◽  
James E. Hines ◽  
David G. Kay

We surveyed the Lesser Snow (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii) of Jenny Lind Island, Nunavut, using aerial photography in June 1988, 1998, and 2006, and a visual helicopter transect survey in July 1990. The estimated number of nesting geese was 39 154 ± SE 2238 in 1988, 19 253 ± 2323 in 1998, and 21 572 ± 1898 in 2006. In 1988 an estimated 2.7% of the nesting geese were Ross’s. The July 1990 population of adult-plumaged birds was 25 020 ± 3114. The estimated percentage blue morph among Snow and Ross’s geese was 19.0% in 1988, 25.1% in 1989, 23.0% in 1990 and 21.1% in 2006. Estimated pre-fledged Snow Goose productivity was 47% young in 1989 and 46% in 1990. Combined numbers of Snow and Ross’s geese on Jenny Lind Island grew over 250 fold, from 210 adults in 1962-1966 to 54 100 adults in 1985. Numbers subsequently declined, to 42 200 in 1988, 25 000 in 1990, 20 300 in 1998, and 26 400 in 2006. Population decline between 1985 and 1990 was consistent with anecdotal reports by others that die-offs of Snow Geese occurred in 1984, 1985 and 1989, and with our August 1989 fieldwork which found evidence of habitat degradation and malnourishment of young geese. In spite of limited food resources on Jenny Lind Island, the colony continued to exist in 2006 at near its 1990 and 1998 levels. Further studies there could provide insights for management of the overabundant mid-continent Snow Goose population and its arctic habitats.


2004 ◽  
Vol 11 (4) ◽  
pp. 193-232 ◽  
Author(s):  
R L Jefferies ◽  
R F Rockwell ◽  
K F Abraham

Agriculture has provided a nutritional subsidy to the Anatidae (swans, geese, ducks), which has affected their trophic relationships and the Arctic wetlands where they breed. The Mid-Continent Population of lesser snow geese, which breeds in the Canadian Arctic and which traditionally wintered in the coastal marshes of the Gulf States, now feeds in agricultural landscapes. The geometric growth of this population since 1970 is coincident with increased application of nitrogen to farmland and high crop yields. Widespread availability of agricultural foods allows the birds to meet much of their energy demand for migration and reproduction. Their migration conforms to a stepping stone model linked to land use, but feeding also takes place upon arrival on the Arctic breeding grounds. High bird numbers have dramatically affected coastal marshes of the Canadian Arctic. Foraging has produced alternative stable states characterized by sward destruction and near irreversible changes in soil properties of exposed sediments. Locally, this loss of resilience has adversely affected different groups of organisms, resulting in an apparent trophic cascade. A spring hunt was introduced in 1999 in an attempt to check population growth. The current annual cull is now thought to be higher than the replacement rate. Much of the decline of the Mid-Continent Population is probably linked to shooting, but the harassment of birds that fail to acquire sufficient food for reproduction may contribute. The agricultural food subsidy has led to a mismatch between this avian herbivore and its environment — a consequence of migratory connectivity that links wintering and breeding grounds. Key words: agricultural crops, lesser snow geese, migratory connectivity, Arctic coastal marshes, grubbing, hypersalinity, the spring hunt.


Sign in / Sign up

Export Citation Format

Share Document