Predation of zebra mussels by crayfish

1994 ◽  
Vol 72 (11) ◽  
pp. 1867-1871 ◽  
Author(s):  
Gordon W. Martin ◽  
Lynda D. Corkum

The introduction of zebra mussels, Dreissena polymorpha (Pallas), to the Great Lakes has redirected a large amount of energy from the planktonic community to the benthic community. The direct transfer of energy from zebra mussels to other large organisms depends on the resistance of the mussels to predation. This study investigated the ability of the crayfish Orconectes propinquus (Girard) to use zebra mussels as a food source. Laboratory experiments were designed in which predator and prey sizes, as well as densities, were manipulated. When presented with zebra mussels of a range of sizes (5–20 mm), crayfish of all sizes (carapace length 1.5–2.9 cm) ate mussels ≤ 8 mm in length almost exclusively, but mussels up to 17 mm were also consumed. No significant difference in utilization of zebra mussels was found between male and female crayfish. Our findings suggest that crayfish have the potential to alter the size structure of zebra mussel populations, but that per capita mussel consumption decreased at densities > 4 crayfish/m2. Mutual interference among predators or a lack of habitat complexity may explain the reduction of mussel consumption at high densities of crayfish.

2001 ◽  
Vol 58 (12) ◽  
pp. 2459-2467 ◽  
Author(s):  
C M Mayer ◽  
L G Rudstam ◽  
E L Mills ◽  
S G Cardiff ◽  
C A Bloom

The aggregate impact of an exotic species introduction, such as the zebra mussel (Dreissena polymorpha), may involve a large number of biotic and abiotic interactions within the recipient ecosystem. We used laboratory experiments and field data to assess effects of zebra mussels on both foraging success of yellow perch (Perca flavescens) and activity of the amphipod Gammarus fasciatus. In two laboratory experiments zebra mussel clusters reduced the rate at which yellow perch captured amphipods. Yellow perch captured fewer amphipods when zebra mussels were present at two light levels (<2.1 and >214 lx) and across a range of prey densities (76–1500 amphipods·m–2). The effect of zebra mussels on amphipod activity depended on light level. Yellow perch captured fewer amphipods in the presence of mussel clusters than when plants were present. The frequency of amphipods in the diets of adult yellow perch in Oneida Lake increased after zebra mussel introduction, but the increase was greater in low mussel density habitats. Our laboratory results and field observations suggest that zebra mussels affect yellow perch foraging on amphipods through increased structural complexity (negative) and increased light penetration ( positive), but not through increased prey density.


1997 ◽  
Vol 54 (1) ◽  
pp. 120-125 ◽  
Author(s):  
W L Perry ◽  
D M Lodge ◽  
G A Lamberti

To test the hypothesis that Orconectes spp. crayfishes could be a significant source of zebra mussel (Dreissena polymorpha) mortality in streams, we conducted a laboratory experiment and a field experiment. In the laboratory experiment, maximum zebra mussel size consumed increased with increasing crayfish size for Orconectes rusticus, Orconectes propinquus, and Orconectes virilis. Slopes differed among crayfish species but not between O. rusticus sexes. To quantify crayfish impacts on seminatural zebra mussel populations, we placed 16 enclosures (0.2 m2) lined with artificial cobble substrata in a midwestern lake-outlet stream (mean width 17 m). Zebra mussels were stocked in each cage (20000 individuals/m2) 14 days before male O. rusticus (20 individuals/m2) were stocked in each of eight enclosures. Densities of all sizes of zebra mussels were reduced in enclosures, with a total density reduction of 31% over the 28 days of the experiment, relative to the exclosures. Crayfish also reduced gastropod densities by 54%, but did not significantly affect other invertebrates. Laboratory and field results suggest that predation by Orconectes crayfishes may significantly reduce zebra mussel populations in streams.


1997 ◽  
Vol 54 (8) ◽  
pp. 1903-1915 ◽  
Author(s):  
S A Thayer ◽  
R C Haas ◽  
R D Hunter ◽  
R H Kushler

Zebra mussels (Dreissena polymorpha) in enclosures located in an experimental pond adjacent to Lake St. Clair, Michigan, increased sedimentation rate but had relatively minor effects on percent organic matter and percent nitrogen content of sediment. In contrast, sediment from Lake St. Clair adjacent to zebra mussels was significantly higher in carbon than that 0.5 m away. Zebra mussels increase the nutritional value of surficial sediment and provide greater structural heterogeneity, which is probably more important in causing change among zoobenthos. Zoobenthos and yellow perch (Perca flavescens) diet were dominated by dipteran larvae and leeches. Zoobenthos was significantly different between enclosures with and without zebra mussels. Treatments with zebra mussels had significantly more oligochaetes and tended to have more crustaceans (isopods and amphipods). In June, yellow perch without zebra mussels consumed significantly more zooplankton, and those with mussels had more crustaceans in their diet. Zooplankton density was greater in treatments without zebra mussels. Yellow perch with zebra mussels grew significantly more than those without mussels. Zebra mussels in the enclosures neither reproduced nor were eaten by yellow perch; hence. the observed growth differences were due to indirect effects involving zebra mussel induced changes in benthic structure and biota.


1994 ◽  
Vol 72 (7) ◽  
pp. 1169-1179 ◽  
Author(s):  
Josef Daniel Ackerman ◽  
Blair Sim ◽  
S. Jerrine Nichols ◽  
Renata Claudi

The ecological and economic impacts of the introduced zebra mussel (Dreissena polymorpha (Pallas)) have been due in part to a life history that is conserved with marine bivalves but unique among the indigenous freshwater fauna. There are a number of life history events in D. polymorpha that follow external fertilization and embryology. The first is a brief trochophore stage. The development of a velum and secretion of a larval shell lead to a D-shaped veliger, which is the first recognizable planktonic larva. Later a second larval shell is secreted and this veliconcha is the last obligate free-swimming veliger. Conversely, the last larval stage, the pediveliger, can either swim using its velum or crawl using its foot. Pediveligers select substrates on which they "settle" by secreting byssal threads and undergo metamorphosis to become plantigrade mussels. The secretion of the adult shell and change in growth axis lead to the convergent heteromyarian shape. Zebra mussels produce byssal threads as adults, but these attachments may be broken, enabling the mussels to translocate to new areas. The recognition of these life history features will lead to a better understanding of zebra mussel biology. In summary, life history stages of zebra mussels are similar to those of marine bivalves and should be identified morphologically rather than on the basis of size.


2000 ◽  
Vol 57 (3) ◽  
pp. 591-599 ◽  
Author(s):  
Marc E Frischer ◽  
Sandra A Nierzwicki-Bauer ◽  
Robert H Parsons ◽  
Kanda Vathanodorn ◽  
Kelli R Waitkus

Zebra mussels (Dreissena polymorpha) have had an enormous impact on aquatic environments. However, little is known concerning their interactions with microbial communities. In these studies, the ability of zebra mussels to derive nutrition from bacterioplankton and their effect on microbial community diversity were investigated in samples from the Hudson River, New York, and in laboratory studies. Clear physiological responses to starvation were observed, including decreases in respiration rates, lipid content, and total weight, that were reversed after feeding zebra mussels a diet of bacteria. Clearance rates of bacteria were correlated with bacteria size (r2= 0.995), with the lowest clearance rates associated with small indigenous river bacteria (size = 0.03 ± 0.04 µm3, clearance rate = 0.08 ± 0.02 mL·mussel-1·min-1). Comparison of the diversity of microbial communities in zebra mussel tissue extract, detritus, and pseudofecal material associated with zebra mussel colonies, surrounding water, and sediment samples revealed distinct microbial assemblages associated with these environments. The overall ecological effect and importance of bacteria - zebra mussel interactions remains unclear, but these studies indicate that these interactions occur and should be included in our efforts to better understand the impact of zebra mussels on aquatic systems.


2000 ◽  
Vol 57 (4) ◽  
pp. 742-754 ◽  
Author(s):  
C M Mayer ◽  
A J VanDeValk ◽  
J L Forney ◽  
L G Rudstam ◽  
E L Mills

We used long-term data on Oneida Lake, New York, to evaluate hypotheses about the effects of introduced zebra mussels (Dreissena polymorpha) on yellow perch (Perca flavescens). We detected no change in survival, diet, or numbers of young-of-the-year (YOY) yellow perch. YOY growth increased in association with zebra mussel introduction and was marginally correlated with zooplankton size, which increased after zebra mussel introduction. Low numbers of YOY in recent years did not explain their increased growth rate. The percentage of age 3 and older yellow perch that consumed zooplankton and benthos increased after zebra mussel introduction. Water clarity, which has increased since zebra mussel introduction, was inversely related to the percentage of the adult population with empty stomachs and positively related to the percentage that consumed benthos. The percentage of adult yellow perch that consumed zooplankton was positively related to zooplankton size. Despite the increase in percentage of adults consuming both types of invertebrate prey, we detected no changes in adult growth associated with zebra mussel introduction. This suggests that the principal effects of zebra mussels on yellow perch in Oneida Lake were not via benthic pathways but through modifications of water clarity and zooplankton. Thus far, these effects have not been negative for the yellow perch population.


1999 ◽  
Vol 56 (4) ◽  
pp. 679-685 ◽  
Author(s):  
María J González ◽  
Amy Downing

We examined mechanisms underlying increased amphipod abundance after zebra mussels (Dreissena polymorpha) invaded Lake Erie. We conducted field substrate preference experiments to test the hypotheses that amphipods prefer (i) high-complexity substrates over low-complexity substrates and (or) (ii) substrates with high mussel feces and pseudofeces deposition over substrates with low deposition. We measured amphipod preference for bare rock, live mussels, and dead mussels in spring (May 1996) and summer (July and August 1995, June and August 1996). Habitat complexity affected amphipod habitat preference, and preference varied seasonally. In spring, amphipod density was highest on dead mussels, but the response was highly variable. In midsummer (June and July), amphipods showed no substrate preference. In late summer (August), amphipods consistently preferred high-complexity mussel substrates. Amphipods never preferred low-complexity substrates. We also evaluated effects of zebra mussel presence on fish-amphipod interactions in laboratory feeding trials. We tested the hypothesis that mussel presence decreases bluegill (Lepomis macrochirus) and yellow perch (Perca flavescens) predation on amphipods. Predation by bluegill but not yellow perch was significantly lowered by mussel presence. Our results support the hypothesis that the increase in amphipods upon zebra mussel invasion is due to increased habitat complexity, possibly by reducing predation risk. However, the effects of zebra mussel on fish-amphipod interactions depended on predator species.


2001 ◽  
Vol 58 (6) ◽  
pp. 1208-1221 ◽  
Author(s):  
Henry A Vanderploeg ◽  
James R Liebig ◽  
Wayne W Carmichael ◽  
Megan A Agy ◽  
Thomas H Johengen ◽  
...  

Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year period before zebra mussel (Dreissena polymorpha) establishment in Saginaw Bay (Lake Huron) but became abundant in three of five summers subsequent of mussel establishment. Using novel methods, we determined clearance, capture, and assimilation rates for zebra mussels feeding on natural and laboratory M. aeruginosa strains offered alone or in combination with other algae. Results were consistent with the hypothesis that zebra mussels promoted blooms of toxic M. aeruginosa in Saginaw Bay, western Lake Erie, and other lakes through selective rejection in pseudofeces. Mussels exhibited high feeding rates similar to those seen for a highly desirable food alga (Cryptomonas) with both large ( >53 µm) and small (<53 µm) colonies of a nontoxic and a toxic laboratory strain of M. aeruginosa known to cause blockage of feeding in zooplankton. In experiments with naturally occurring toxic M. aeruginosa from Saginaw Bay and Lake Erie and a toxic isolate from Lake Erie, mussels exhibited lowered or normal filtering rates with rejection of M. aeruginosa in pseudofeces. Selective rejection depended on "unpalatable" toxic strains of M. aeruginosa occurring as large colonies that could be rejected efficiently while small desirable algae were ingested.


1992 ◽  
Vol 70 (12) ◽  
pp. 2486-2490 ◽  
Author(s):  
Diana J. Hamilton

Zebra mussels (Dreissena polymorpha) are subject to size-selective predation by several species of diving ducks and fish in Europe and North America. Ingested mussels are crushed, but the internal septum in the umbonal region of the mussel usually remains intact. Using mussels collected at Point Pelee, Lake Erie, I showed that there is a strong relationship between the length of the septum and of the mussel (r2 = 0.96). I compared this with a similar relationship developed for European zebra mussels and tested both models on mussels collected from Point Pelee and from Stoney Point, Lake St. Clair. Septal length relative to mussel length was greatest at Stoney Point and least at Point Pelee. The European estimates fell between the two. I concluded that to obtain accurate estimates of mussel length when investigating size-selective predation on zebra mussels, the relationship between mussel and septal lengths should be determined at each study location.


1995 ◽  
Vol 73 (8) ◽  
pp. 1438-1443 ◽  
Author(s):  
Patricia A. Wisenden ◽  
Robert C. Bailey

We used artificial substrates (rocks < 1500 cm2 surface area) in shallow water (2 m) to assess the development of epilithic macroinvertebrate communities in the presence of zebra mussels. At a turbulent site (Wheatley, Lake Erie), previously colonized (with a non-zebra mussel community) and uncolonized rocks left for 1 year both had lower densities of total invertebrates than previously colonized rocks recovered after only 1 day. As zebra mussels colonized the rocks, Gammarus sp. (amphipods) increased in density, while Chironomini and Tanypodinae (midges), Polycentropus sp. (caddisflies), and Physella sp. and Pleurocera sp. (snails) declined. At a protected site (Stoney Point, Lake St. Clair), previously colonized rocks initially (2 months) had higher densities of many taxa, including zebra mussels, than uncolonized rocks. This difference disappeared after 1 year, as zebra mussels increased on all rocks. Gammarus sp. maintained its numbers, while Tricladida (flatworms) increased and Oecetis sp. (caddisflies), Physella sp., Pleurocera sp., and Tanypodinae declined. Although a similar "zebra mussel – amphipod" community developed on rocks at both sites, we hypothesize that at the turbulent site, zebra mussels and amphipods have a shared tolerance of unstable habitats, and zebra mussels facilitate amphipod colonization of rocks by increasing microhabitat stability and food supply. At the protected site, zebra mussels outcompete other surface dwellers like snails for space, and facilitate the colonization of scavenger–omnivores like amphipods and flatworms.


Sign in / Sign up

Export Citation Format

Share Document