scholarly journals Time-dependent scalar fields in modified gravities in a stationary spacetime

Author(s):  
Yi Zhong ◽  
Bao-Ming Gu ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu
1994 ◽  
Vol 09 (19) ◽  
pp. 1785-1790 ◽  
Author(s):  
O. CASTAÑOS ◽  
R. LÓPEZ-PEÑA ◽  
V.I. MAN’KO

The infinite number of time-dependent linear in field and conjugated momenta invariants is derived for the scalar field using the Noether’s theorem procedure.


2004 ◽  
Vol 19 (32) ◽  
pp. 5651-5661 ◽  
Author(s):  
C. MARTÍNEZ-PRIETO ◽  
O. OBREGÓN ◽  
J. SOCORRO

Using the ontological interpretation of quantum mechanics in a particular sense, we obtain the classical behavior of the scale factor and two scalar fields, derived from a string effective action for the Friedmann–Robertson–Walker (FRW) time dependent model. Besides, the Wheeler–DeWitt equation is solved exactly. We speculate that the same procedure could also be applied to S-branes.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Wen-Yuan Ai ◽  
Marco Drewes ◽  
Dražen Glavan ◽  
Jan Hajer

Abstract We study how oscillations of a scalar field condensate are damped due to dissipative effects in a thermal medium. Our starting point is a non-linear and non-local condensate equation of motion descending from a 2PI-resummed effective action derived in the Schwinger-Keldysh formalism appropriate for non-equilibrium quantum field theory. We solve this non-local equation by means of multiple-scale perturbation theory appropriate for time-dependent systems, obtaining approximate analytic solutions valid for very long times. The non-linear effects lead to power-law damping of oscillations, that at late times transition to exponentially damped ones characteristic for linear systems. These solutions describe the evolution very well, as we demonstrate numerically in a number of examples. We then approximate the non-local equation of motion by a Markovianised one, resolving the ambiguities appearing in the process, and solve it utilizing the same methods to find the very same leading approximate solution. This comparison justifies the use of Markovian equations at leading order. The standard time-dependent perturbation theory in comparison is not capable of describing the non-linear condensate evolution beyond the early time regime of negligible damping. The macroscopic evolution of the condensate is interpreted in terms of microphysical particle processes. Our results have implications for the quantitative description of the decay of cosmological scalar fields in the early Universe, and may also be applied to other physical systems.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Alexander A. H. Graham ◽  
Rahul Jha

Author(s):  
Joshua Kirby ◽  
Marco A. Montes de Oca ◽  
Steven Senger ◽  
Louis F. Rossi ◽  
Chien-Chung Shen

2016 ◽  
Vol 94 (10) ◽  
Author(s):  
B. Malakolkalami ◽  
A. Mahmoodzadeh

Sign in / Sign up

Export Citation Format

Share Document