scholarly journals Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

2017 ◽  
Vol 77 (12) ◽  
Author(s):  
J. F. S. Neto ◽  
K. A. L. Lima ◽  
P. R. S. Carvalho ◽  
M. I. Sena-Junior
2020 ◽  
Vol 117 (26) ◽  
pp. 14764-14768 ◽  
Author(s):  
Wanying Kang ◽  
Glenn Flierl

The ice shell on Enceladus, an icy moon of Saturn, exhibits strong asymmetry between the northern and southern hemispheres, with all known geysers concentrated over the south pole, even though the expected pattern of tidal forced deformation should be symmetric between the north and south poles. Using an idealized ice-evolution model, we demonstrate that this asymmetry may form spontaneously, without any noticeable a priori asymmetry (such as a giant impact or a monopole structure of geological activity), in contrast to previous studies. Infinitesimal asymmetry in the ice shell thickness due to random perturbations are found to be able to grow indefinitely, ending up significantly thinning the ice shell at one of the poles, thereby allowing fracture formation there. Necessary conditions to trigger this hemispheric symmetry-breaking mechanism are found analytically. A rule of thumb we find is that, for Galilean and Saturnian icy moons, the ice shell can undergo hemispheric symmetry breaking only if the mean shell thickness is around 10 to 30 km.


1992 ◽  
Vol 14 (3) ◽  
pp. 229-238
Author(s):  
M. Ahmad ◽  
S. K. Tikoo ◽  
T. K. Raina

1993 ◽  
Vol 08 (16) ◽  
pp. 1495-1505 ◽  
Author(s):  
CHUNG-CHIEH LEE ◽  
CHOON-LIN HO

Effects of both finite temperature and density on Wilson line symmetry breaking mechanism is considered for an SU(N) theory defined on space-time manifold R1,d−2×S1 with massless fermion in the adjoint representation of the gauge group. Detailed analysis is given for the groups SU(2) and SU(3) on R1,2×S1. It is found that, at fixed fermion boundary condition, the critical temperatures and densities at which the full SU(N) symmetry is restored are the same for N=2 and N=3.


1988 ◽  
Vol 03 (03) ◽  
pp. 243-249 ◽  
Author(s):  
KEI-ICHI MAEDA

Assuming the action from the string theory and taking into account the dynamical freedom of a dilaton and its coupling to matter fluid, we show that fundamental ‘constants’ in string theories are independent of the ‘radius’ of the internal space. Since the scalar related to the ‘constants’ is coupled to the 4-dimensional gravity and matter fluid in the same way as in the Jordan-Brans-Dicke theory with ω=−1, it must be massive and can get a mass easily through some symmetry breaking mechanism (e.g. the SUSY breaking due to a gluino condensation). Consequently, time variation of fundamental constants is too small to be observed.


2000 ◽  
Vol 12 (3) ◽  
pp. 565-596 ◽  
Author(s):  
Chris J. S. Webber

Symmetry networks use permutation symmetries among synaptic weights to achieve transformation-invariant response. This article proposes a generic mechanism by which such symmetries can develop during unsupervised adaptation: it is shown analytically that spontaneous symmetry breaking can result in the discovery of unknown invariances of the data's probability distribution. It is proposed that a role of sparse coding is to facilitate the discovery of statistical invariances by this mechanism. It is demonstrated that the statistical dependences that exist between simple-cell-like threshold feature detectors, when exposed to temporally uncorrelated natural image data, can drive the development of complex-cell-like invariances, via single-cell Hebbian adaptation. A single learning rule can generate both simple-cell-like and complex-cell-like receptive fields.


Sign in / Sign up

Export Citation Format

Share Document