scholarly journals Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at $$\sqrt{s}=13\,\text {TeV} $$

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities $$-6.6<\eta <-5.2$$-6.6<η<-5.2 in proton-proton collisions at a centre-of-mass energy $$\sqrt{s}=13\,\text {TeV} $$s=13TeV. The results are presented as a function of the charged particle multiplicity in the region $$|\eta |<2$$|η|<2. This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data. All generators considered overestimate the fraction of energy going into hadrons.

Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
S. P. Adhya ◽  
A. Adler ◽  
...  

Abstract The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity ($$\left| y\right| < 0.5$$y<0.5) are measured in proton-proton collisions at $$\sqrt{s}$$s = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of $$\mathrm{K}^{0}_{S}$$KS0, $$\Lambda $$Λ, $$\Xi $$Ξ, and $$\Omega $$Ω increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV.


2018 ◽  
Vol 172 ◽  
pp. 01006
Author(s):  
W. Y. Wang ◽  
H. P. Lau ◽  
Q. Leong ◽  
A. H. Chan ◽  
C. H. Oh

An asymptotic solution to the QCD parton branching equation is derived using the method of Laplace transformation and saddle point approximation. The distribution is applied to charged particle multiplicity distributions in proton-proton collisions at √s = 0.9, 2.36, and 7 TeV for |ƞ| < 0.5, 1.0, 1.5, 2.0, 2.4, and 8 TeV for |ƞ| < 0.5, 1.0, 1.5, as well as 13 TeV data for |ƞ| < 0.8 and 2.5.


Sign in / Sign up

Export Citation Format

Share Document