scholarly journals Z lepton flavour violation as a probe for new physics at future $$e^+e^-$$ colliders

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Xabier Marcano ◽  
Joydeep Roy

AbstractIn this work we assess the potential of discovering new physics by searching for lepton-flavour-violating (LFV) decays of the Z boson, $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j , at the proposed circular $$e^+e^-$$ e + e - colliders CEPC and FCC-ee. Both projects plan to run at the Z-pole as a “Tera Z factory”, i.e., collecting $${\mathcal {O}}\left( 10^{12} \right) $$ O 10 12 Z decays. In order to discuss the discovery potential in a model-independent way, we revisit the LFV Z decays in the context of the Standard Model effective field theory and study the indirect constraints from LFV $$\mu $$ μ and $$\tau $$ τ decays on the operators that can induce $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j . We find that, while the $$Z\rightarrow \mu e$$ Z → μ e rates are beyond the expected sensitivities, a Tera Z factory is promising for $$Z\rightarrow \tau \ell $$ Z → τ ℓ decays, probing New Physics at the same level of future low-energy LFV observables.

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
S. Davidson

Abstract Lepton Flavour Violation (LFV) is New Physics that must occur, but is stringently constrained by experiments searching for μ ↔ e flavour change, such as μ → eγ, μ →$$ e\overline{e}e $$ e e ¯ e or μ → e conversion. However, in an Effective Field Theory(EFT) parametrisation, there are many more μ ↔ e operators than restrictive constraints, so determining operator coefficients from data is a remote dream. It is nonetheless interesting to learn about New Physics from data, so this manuscript introduces “observable-vectors” in the space of operator coefficients, which identify at any scale the combination of coefficients probed by the observable. These vectors have an overlap ≳ 10−3 with most of the coefficients, and are used to study whether μ → eγ, μ →$$ e\overline{e}e $$ e e ¯ e and μ → e conversion give complementary information about New Physics. The appendix gives updated sensitivities of these processes, (and a subset of τ → ℓ decays), to operator coefficients at the weak scale in the SMEFT and in the EFT below mW.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


2018 ◽  
Vol 179 ◽  
pp. 01019
Author(s):  
Giovanni Marco Pruna

These proceedings review the status of present and future bounds on muonic lepton flavour violating transitions in the context of an effective-field theory defined below the electroweak scale. A specific focus is set on the phenomenology of μ → eγ, μ → 3e transitions and coherent μ → e nuclear conversion in the light of current and future experiments. Once the experimental limits are recast into bounds at higher scales, it is shown that the interplay between the various experiments is crucial to cover all corners of the parameter space.


2016 ◽  
Vol 31 (33) ◽  
pp. 1644006 ◽  
Author(s):  
Stefan Antusch ◽  
Oliver Fischer

The nonunitarity of the leptonic mixing matrix is a generic signal of new physics aiming at the generation of the observed neutrino masses. We discuss the Minimal Unitarity Violation (MUV) scheme, an effective field theory framework which represents the class of extensions of the Standard Model (SM) by heavy neutral leptons, and discuss the present bounds on the nonunitarity parameters as well as estimates for the sensitivity of the CEPC, based on the performance parameters from the preCDR.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Víctor Bresó-Pla ◽  
Adam Falkowski ◽  
Martín González-Alonso

Abstract We study the forward-backward asymmetry AFB in pp → ℓ+ℓ− at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current AFB data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.


Author(s):  
Antonio Pich

These lectures provide an introduction to the low-energy dynamics of Nambu–Goldstone fields, which associated with some spontaneous (or dynamical) symmetry breaking, using the powerful methods of effective field theory. The generic symmetry properties of these massless modes are described in detail and two very relevant phenomenological applications are worked out: chiral perturbation theory, the low-energy effective theory of QCD, and the (non-linear) electroweak effective theory. The similarities and differences between these two effective theories are emphasized, and their current status is reviewed. Special attention is given to the short-distance dynamical information encoded in the low-energy couplings of the effective Lagrangians. The successful methods developed in QCD could help us to uncover fingerprints of new physics scales from future measurements of the electroweak effective theory couplings.


2020 ◽  
Vol 35 (15n16) ◽  
pp. 2041015 ◽  
Author(s):  
Roberto Franceschini

A summary of the recent results from CERN Yellow Report on the CLIC potential for new physics is presented. Greater emphasis is put on the direct search for new physics scenarios motivated by the open issues of the Standard Model as well as on interpretations of Standard Model measurements as probes of new physics in the context of effective field theory extensions of the Standard Model.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
David Marzocca ◽  
Ui Min ◽  
Minho Son

Abstract We study the effective field theory sensitivity of an LHC analysis for the τν final state with an associated b-jet. To illustrate the improvement due to the b-tagging, we first recast the recent CMS analysis in the τν channel, using an integrated luminosity of 35.9 fb−1 at $$ \sqrt{s} $$ s = 13 TeV, and provide limits on all the dimension-six effective operators which contribute to the process. The expected limits from the b-tagged analysis are then derived and compared. We find an improvement of approximately ∼ 30% in the bounds for operators with a b quark. We also discuss in detail possible angular observables to be used as a discriminator between dimension-six operators with different Lorentz structure. Finally, we study the impact of these limits on some simplified scenarios aimed at addressing the observed deviations from the Standard Model in lepton flavor universality ratios of semileptonic B-meson decays. In particular, we compare the collider limits on those scenarios set by our analysis either with or without the b-tagging, assuming an integrated luminosity of 300 fb−1, with relevant low-energy flavor measurements.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma ◽  
Quan-Yu Wang

Abstract We present a complete and independent set of dimension-7 operators in the low energy effective field theory (LEFT) where the dynamical degrees of freedom are the standard model five quarks and all of the neutral and charged leptons. All operators are non-Hermitian and are classified according to their baryon (∆B) and lepton (∆L) numbers violated. Including Hermitian-conjugated operators, there are in total 3168, 750, 588, 712 operators with (∆B, ∆L) = (0, 0), (0, ±2), (±1, ∓1), (±1, ±1) respectively. We perform the tree-level matching with the standard model effective field theory (SMEFT) up to dimension-7 (dim-7) operators in both LEFT and SMEFT. As a phenomenological application we study the effective neutrino-photon interactions due to dim-7 lepton number violating operators that are induced and much enhanced at one loop from dim-6 operators that in turn are matched from dim-7 SMEFT operators. We compare various neutrino-photon scattering cross sections with their counterparts in the standard model and highlight the new features. Finally, we illustrate how these effective interactions could arise from ultraviolet completion.


Sign in / Sign up

Export Citation Format

Share Document