scholarly journals Schwinger pair production and the extended uncertainty principle: can heuristic derivations be trusted?

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Yen Chin Ong

Abstract The rate of Schwinger pair production due to an external electric field can be derived heuristically from the uncertainty principle. In the presence of a cosmological constant, it has been argued in the literature that the uncertainty principle receives a correction due to the background curvature, which is known as the “extended uncertainty principle” (EUP). We show that EUP does indeed lead to the correct result for Schwinger pair production rate in anti-de Sitter spacetime (the case for de Sitter spacetime is similar), provided that the EUP correction term is negative (positive for the de Sitter case). We compare the results with previous works in the EUP literature, which are not all consistent. Our result further highlights an important issue in the literature of generalizations of the uncertainty principle: how much can heuristic derivations be trusted?

2010 ◽  
Vol 25 (20) ◽  
pp. 1697-1703 ◽  
Author(s):  
S. MIGNEMI

It has been proposed that on (anti)-de Sitter background, the Heisenberg uncertainty principle should be modified by the introduction of a term proportional to the cosmological constant. We show that this modification of the uncertainty principle can be derived straightforwardly from the geometric properties of (anti)-de Sitter spacetime. We also discuss the connection between the so-called extended generalized uncertainty principle and triply special relativity.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Xiaokai He ◽  
Jiliang Jing ◽  
Zhoujian Cao

Gravitational radiation plays an important role in astrophysics. Based on the fact that our universe is expanding, the gravitational radiation when a positive cosmological constant is presented has been studied along with two different ways recently, one is the Bondi–Sachs (BS) framework in which the result is shown by BS quantities in the asymptotic null structure, the other is the perturbation approach in which the result is presented by the quadrupoles of source. Therefore, it is worth to interpret the quantities in asymptotic null structure in terms of the information of the source. In this paper, we investigate this problem and find the explicit expressions of BS quantities in terms of the quadrupoles of source in asymptotically de Sitter spacetime. We also estimate how far away the source is, the cosmological constant may affect the detection of the gravitational wave.


2012 ◽  
Vol 27 (11) ◽  
pp. 1250041 ◽  
Author(s):  
MU-LIN YAN ◽  
SEN HU ◽  
WEI HUANG ◽  
NENG-CHAO XIAO

The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant Λ eff which is the sum of the quantum zero point energy Λ dark energy and the geometric cosmological constant Λ. The OPERA experiment can be applied to determine the geometric cosmological constant Λ. It is the first study to distinguish the contributions of Λ and Λ dark energy from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter spacetime symmetry.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944018 ◽  
Author(s):  
Per Berglund ◽  
Tristan Hübsch ◽  
Djordje Minić

Realizing dark energy and the observed de Sitter spacetime in quantum gravity has proven to be obstructed in almost every usual approach. We argue that additional degrees of freedom of the left- and right-movers in string theory and a resulting doubled, noncommutatively generalized geometric formulation thereof can lead to an effective model of dark energy consistent with de Sitter spacetime. In this approach, the curvature of the canonically conjugate dual space provides for the dark energy inducing a positive cosmological constant in the observed spacetime, whereas the size of the above dual space is the gravitational constant in the same observed de Sitter spacetime. As a hallmark relation owing to a unique feature of string theory which relates short distances to long distances, the cosmological constant scale, the Planck scale and the effective TeV-sized particle physics scale must satisfy a see-saw-like formula — precisely the generic prediction of certain stringy cosmic brane type models.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Jaume Giné ◽  
Giuseppe Gaetano Luciano

AbstractIn this paper we show that Modified Inertia, i.e., the modification of inertia predicted by some alternative theories of gravity at cosmic scales, can be naturally derived within the framework of the extended uncertainty principle (EUP). Specifically, we consider two possible extensions of the Heisenberg uncertainty principle (HUP), corresponding to two different deformations of the fundamental commutator: the first one provides the natural generalization of the HUP to the (anti)-de Sitter spacetime and is endowed with only a quadratic correction in the uncertainty position. On the other hand, the second model contains both linear and quadratic extra terms. We prove that modified inertia is a direct consequence of the minimal acceleration experienced by any body due to the cosmic expansion. The obtained results are then discussed in connection with the empirical predictions of Modified Newtonian dynamics (MoND). The requirement of consistency between the two approaches allows us to fix the adjustable constant which marks the transition between the Newtonian and deep-MoND regimes.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Shuichi Yokoyama

Abstract A dynamical aspect of quantum gravity on de Sitter spacetime is investigated by holography and the de Sitter/conformal field theory correspondence. We show that de Sitter spacetime emerges from a free Sp($N$) vector model by complexifying the ghost fields and course-graining them by flow equation in parallel to the imaginary axis. We confirm that the emergence of de Sitter spacetime is ensured by conformal symmetry. We also compute the quantum corrections to the cosmological constant up to the next-to-leading order of the $1/N$ expansion in a proposed holographic approach. As a result the sub-leading corrections have the opposite sign to the classical value. This implies that a quantum gravity on de Sitter spacetime is perturbatively stable and quantum effects make the universe flatter and the cosmological constant smaller.


2008 ◽  
Vol 86 (4) ◽  
pp. 591-595
Author(s):  
K Schleich ◽  
D M Witt

Recent observations in cosmology indicate an accelerating expansion of the Universe postulated to arise from some form of dark energy, the paradigm being positive cosmological constant. De Sitter spacetime is the well-known isotropic solution to the Einstein equations with cosmological constant. However, as discussed here, it is not the most general, locally isotropic solution. One can construct an infinite family of such solutions, designer de Sitter spacetimes, which are everywhere locally isometric to a region of de Sitter spacetime. However, the global dynamics of these designer cosmologies is very different than that of de Sitter spacetime itself. The construction and dynamics of these designer de Sitter spacetimes is detailed along with some comments about their implications for the structure of our Universe.PACS Nos.: 04.20.–q, 04.20.Ex, 04.20.Gz, 98.80.–k


Sign in / Sign up

Export Citation Format

Share Document