scholarly journals Electroweak physics in inclusive deep inelastic scattering at the LHeC

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Daniel Britzger ◽  
Max Klein ◽  
Hubert Spiesberger

AbstractAt the proposed electron-proton collider LHeC electroweak interactions can be uniquely studied in a largely unexplored kinematic region of spacelike momentum transfer. We simulate inclusive neutral- and charged-current deep-inelastic lepton proton scattering cross section data at center-of-mass energies of 1.2 and 1.3 TeV, and estimate the uncertainties of Standard Model parameters as well as of parameters describing physics beyond the Standard Model. A precision at sub-percent level is expected for the measurement of the weak neutral-current couplings of the light-quarks to the Z boson, $$g_{A/V}^{u/d}$$ g A / V u / d , improving their present precision by more than an order of magnitude. The weak mixing angle can be determined with a precision of about $$\Delta \sin ^2\theta _\text {W}=\pm \,0.00015$$ Δ sin 2 θ W = ± 0.00015 , and its scale dependence can be studied in the range between about 25 and 700 GeV. An indirect determination of the W-boson mass in the on-shell scheme is possible with an experimental uncertainty down to $$\Delta m_{W}=\pm \,6\,\text {MeV}$$ Δ m W = ± 6 MeV . We discuss how measurements in deep-inelastic scattering compare with those in the timelike domain, and which aspects are unique, for instance electroweak parameters in charged-current interactions. We conclude that the LHeC will determine electroweak physics parameters, in the spacelike region, with unprecedented precision leading to thorough tests of the Standard Model and possibly beyond.

1998 ◽  
Vol 13 (10) ◽  
pp. 1543-1621 ◽  
Author(s):  
B. FOSTER

Results from the H1 and ZEUS experiments at HERA on deep inelastic scattering are reviewed. The data lead to a consistent picture of a steep rise in the F2 structure function and in the gluon density within the proton. Important new information on the partonic structure of diffraction is emerging from H1 and ZEUS. The spacelike region in which the weak and electromagnetic interactions become of equal strength is being explored for the first time. A possible excess of events at high x and Q2 compared to the expectations of the Standard Model has been observed in both experiments.


2019 ◽  
Vol 222 ◽  
pp. 04005
Author(s):  
Albina Gurskaya ◽  
Mikhail Dolgopolov ◽  
Elza Rykova

The minimal supersymmetric extension of the standard model with CP-violation is considered in this paper. The main area of the model parameters, which is attractive for researchers, corresponds to small values of the tangent mixing angle of two doublets Higgs fields (tanβ). The authors discuss the possibilities of the model in correlation with the data on the search for the lightest stable supersymmetric particle. The masses of neutral Higgs bosons in the basis of CP-violationwas calculated.The results are presented as dependencies neutral CP-odd Higgs boson mass mA on tanβ. At small values tgβ the mass of the lightest stable particle must be more than ∼ 250 GeV.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

Abstract A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon. The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for production via vector boson fusion and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a Higgs boson mass of 125 GeV, assuming the standard model production rates, the observed (expected) 95% confidence level upper limit on the branching fraction is 3.5 (2.8)%. This is the first search for such decays in the vector boson fusion channel. Combination with a previous search for Higgs bosons produced in association with a Z boson results in an observed (expected) upper limit on the branching fraction of 2.9 (2.1)% at 95% confidence level.


2019 ◽  
Vol 632 ◽  
pp. A91 ◽  
Author(s):  
Nikki Arendse ◽  
Adriano Agnello ◽  
Radosław J. Wojtak

Context. The matter sound horizon can be infered from the cosmic microwave background within the Standard Model. Independent direct measurements of the sound horizon are then a probe of possible deviations from the Standard Model. Aims. We aim at measuring the sound horizon rs from low-redshift indicators, which are completely independent of CMB inference. Methods. We used the measured product H(z)rs from baryon acoustic oscillations (BAO) together with supernovae Ia to constrain H(z)/H0 and time-delay lenses analysed by the H0LiCOW collaboration to anchor cosmological distances (∝ H0−1). Additionally, we investigated the influence of adding a sample of quasars with higher redshift with standardisable UV-Xray luminosity distances. We adopted polynomial expansions in H(z) or in comoving distances so that our inference was completely independent of any cosmological model on which the expansion history might be based. Our measurements are independent of Cepheids and systematics from peculiar motions to within percent-level accuracy. Results. The inferred sound horizon rs varies between (133 ± 8) Mpc and (138 ± 5) Mpc across different models. The discrepancy with CMB measurements is robust against model choice. Statistical uncertainties are comparable to systematics. Conclusions. The combination of time-delay lenses, supernovae, and BAO yields a distance ladder that is independent of cosmology (and of Cepheid calibration) and a measurement of rs that is independent of the CMB. These cosmographic measurements are then a competitive test of the Standard Model, regardless of the hypotheses on which the cosmology is based.


2011 ◽  
Vol 700 (5) ◽  
pp. 294-304 ◽  
Author(s):  
J. Blümlein ◽  
A. Hasselhuhn ◽  
P. Kovacikova ◽  
S. Moch

Sign in / Sign up

Export Citation Format

Share Document